运动相界面的耗散结构模型
Dissipative Structure Model of the Moving Boundary

作者: 万见峰 * , 陈世朴 :上海交通大学材料科学与工程学院;

关键词: 运动相界面耗散结构马氏体逆相变Moving Boundary Dissipative Structure Martensite Reverse Phase Transition

摘要:

基于耗散结构原理,我们得到马氏体相变中的运动相界面是耗散结构。具有耗散结构的相界面运动方程可表示为:,其中M ¹ 0N ¹ 0。马氏体逆相变中相界面由于运动方向相反,其耗散系数、界面应力与正相变不同,逆相变的相界面运动方程与正相变也有所差异,但逆相变中的运动相界面同样属于能量耗散体系。

Base on the dissipative principles, the moving interface between martensite and parent can be taken as the dissipative structure. The equation of the moving dissipative interface could be expressed as in which M ¹ 0, N ¹  0,. Compared with the martensitic transformation, its reverse transition may have some differences such as the direction of interfacial motion, the dissipative coefficient, and the interfacial resistance, which decided a different equation of interfacial motion for the reverse transition. This kind of interface during the reverse transition is still a type of dissipative structure.

文章引用: 万见峰 , 陈世朴 (2012) 运动相界面的耗散结构模型。 应用物理, 2, 150-152. doi: 10.12677/APP.2012.24025

参考文献

[1] 徐祖耀. 形状记忆材料[M]. 上海: 上海交通大学出版社, 2000.

[2] 徐祖耀等. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999.

[3] G. B. Olson, M. Cohen. Thermoelastic behavior in martensitic transformations. Scripta Metallurgica et Materialia, 1975, 9: 1247- 1253.

[4] G. B. Olson, M. Cohen. Reply to “on the equilibrium temperature in thermoelastic martensitic transformations”. Scripta Metallurgica et Materialia, 1977, 11: 345-347.

[5] 万见峰, 陈世朴, 徐祖耀. Fe-Mn-Si合金相变热滞的理论计算[J]. 金属学报, 2005, 41(8): 795-798.

[6] R. J. Donnely, R. Herman and I. Prigogine. Non-equilibrium thermodynamics, variational techniques and stability. Chicago: The University of Chicago Press, 1965.

[7] I. Prigogine, P. Glansdorff. Variational properties and fluctuation. Theory Physica, 1965, 31(8): 1242-1256.

[8] 邓永瑞. 马氏体相变理论[M]. 北京: 科学出版社, 1993.

[9] 崔玉亭, 朱亚波, 廖克俊, 王万录. Ni2MnGa 单晶马氏体相变过程摩擦耗能的热动力学计算[J]. 物理学报, 2004, 53: 861-866.

分享
Top