准晶塑性微观机理研究进展
Research Progress in Microscopic Mechanism of Quasicrystal Plasticity

作者: 孙泽辉 :中国科学技术大学近代力学系;

关键词: 准晶塑性微观控速机制Quasicrystals Plasticity Microscopic Rate-Controlling Mechanism

摘要:

准晶材料具有与传统晶体材料不同的长程平移序,导致准晶中位错的结构及其运动的控速机制与传统晶体相比差别很大,因而表现出与传统晶体不同的塑性变形行为。本文详细阐述了准晶塑性微观机理的实验和数值研究成果及相应的各种塑性微观控速机制的理论模型。

Abstract: Because of the unique long-range order, the dislocation structure and its motion in quasicrystals are quite different from that in crystals which results in distinct plastic behaviors of quasicrystals. The present paper provided a comprehensive review of the experimental and numerical study on microscopic mechanism of quasicrystal plasticity and the various theoretical models about the rate-controlling mechanism.

文章引用: 孙泽辉 (2012) 准晶塑性微观机理研究进展。 应用物理, 2, 134-139. doi: 10.12677/APP.2012.24022

参考文献

[1] D. Shechtman, I. Blech, D. Gratias, et al. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 1984, 53(20): 1951-1953.

[2] D. Levine, P. J. Steinhardt. Quasicrystals: A new class of ordered structures. Physical Review Letters, 1984, 53(26): 2477-2480.

[3] D. Levine, P. J. Steinhardt. Quasicrystals. I. Definition and structure. Physical Review B, 1986, 34(2): 596-616.

[4] 董闯. 准晶材料[M]. 北京: 国防工业出版社, 1998.

[5] A. P. Tsai, K. Aoki, A. Inoue, et al. Synthesis of stable quasi- crystalline particle-dispersed Al base composite alloys. Journal of Materials Research, 1993, 8(1): 5-8.

[6] A. Sanchez, F. I. G. DeBlas, J. M. Algaba, et al. Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials. Materials Research Society Symposium Proceedings, 1999, 553: 447-458.

[7] J. M. Dubois, S. S. Kang and J. V. Stebut. Quasicrystalline low-friction coatings. Journal of Materials Science Letters, 1991, 10(9): 537-541.

[8] T. Eisenhammer, H. Nolte, W. Assmann, et al. Preparation and properties of solar selective absorbers based on AlCuFe and AlCuFeCr thin films: Industrial aspects. Materials Research Society Symposium Proceedings, 1999, 533: 435-446.

[9] T. Shibuya, T. Hashimoto and S. Takeuchi. Plastic deformation of Al-Ru-Cu icosahedral quasicrystals. Japanese Journal of Applied Physics, 1990, 29(2): L349-L351.

[10] M. Wollgarten, M. Beyss, K. Urban, et al. Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Physical Review Letters, 1993, 71(4): 549-552.

[11] M. Wollgarten, H. Saka and A. Inoue. Microstructural investigation of the brittle-to-ductile transition in Al-Pd-Mn quasicrystals. Philosophical Magazine A, 1999, 79(9): 2195-2208.

[12] C. Dong, J. Wu, L. Zhang, et al. Phase transitions in quasi- crystals induced by friction and wear. Materials Research Society Symposium Proceedings, 2001, 643: K7.5.1-K7.5.11.

[13] R. Rosenfeld, M. Feuerbacher, B. Baufeld, et al. Study of plastically deformed icosahedral Al-Pd-Mn single quasicrystals by trans- mission electron microscopy. Philosophical Magazine Letters, 1995, 72(6): 375-384.

[14] M. Wollgarten, M. Bartsch, U. Messerschmidt, et al. In-situ observation of dislocation motion in icosahedral Al-Pd-Mn single quasi-crystals. Philosophical Magazine Letters, 1995, 71(2): 99- 105.

[15] U. Messerschmidt, M. Bartsch, M. Feuerbacher, et al. Friction mechanism of dislocation motion in icosahedral Al-Pd-Mn quasi- crystals. Philosophical Magazine A, 1999, 79(9): 2123- 2135.

[16] S. Takeuchi, R. Tamura, E. Kabutova, et al. Plastic deformation of icosahedral Al-Pd-Mn single quasicrystals to large strains II. Deformation mechanism. Philosophical Magazine A, 2002, 82(2): 379-385.

[17] M. Feuerbacher, C. Metzmacher, M. Wollgarten, et al. The plasticity of icosahedral quasicrystals. Materials Science and Engineering A, 1997, 233: 103-110.

[18] D. Caillard, G. Vanderschaeve, L. Bresson, et al. Observations of pure climb dislocation movements in Al-Pd-Mn. Materials Research Society Symposium Proceedings, 1999, 553: 301-306.

[19] D. Caillard, C. Roucau, L. Bresson, et al. Dislocation motions in 5-fold planes of icosahedral Al-Pd-Mn. Acta Materialia, 2002, 50(18): 4499-4509.

[20] F. Mompiou, D. Caillard and M. Feuerbacher. In-situ observation of dislocation motion in icosahedral Al-Pd-Mn quasicrystals. Philosophical Magazine, 2004, 84(25-26): 2777-2792.

[21] M. Texier, L. Thilly, J. Bonneville, et al. Shear experiments under confining pressure conditions of Al-Pd-Mn single quasi- crystals. Materials Science and Engineering: A, 2005: 400-401: 311-314.

[22] P. Guyot, G. Canova. The plasticity of icosahedral quasicrystals. Philosophical Magazine A, 1999, 79(11): 2815-2832.

[23] S. Takeuchi. Dislocation processes in quasicrystals—Kink-pair formation control or jog-pair formation control. Materials Science and Engineering: A, 2005, 400-401: 306-310.

[24] H.-R. Trebin, R. Mikulla and J. Roth. Motion of dislocations in two-dimensional decagonal quasicrystals. Journal of Non-Cry- stalline Solids, 1993, 153-154: 272-275.

[25] R. Mikulla, J. Roth and H.-R. Trebin. Simulation of shear stress in two-dimensional decagonal quasicrystals. Philosophical Magazine B, 1995, 71(5): 981-988.

[26] C. Dilger, R. Mikulla, J. Roth and H.-R. Trebin. Simulation of shear stress in icosahedral quasicrystals. Philosophical Magazine A, 1997, 75(2): 425-441.

[27] G. D. Schaaf, J. Roth, H.-R. Trebin, et al. Numerical simulation of dislocation motion in three-dimensional icosahedral quasi- crystals. Philosophical Magazine A, 2000, 80(7): 1657-1668.

[28] G. D. Schaaf, J. Roth and H.-R. Trebin. Dislocation motion in icosahedral quasicrystals at elevated temperatures: Numerical simulation. Philosophical Magazine, 2003, 83(21): 2449-2465.

[29] H. Takakura, C. P. Gomez, A. Yamamoto, et al. Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nature Materials, 2007, 6(1): 58-63.

[30] J. Bonneville, D. Caillard and P. Guyot. Dislocations and plasticity of icosahedral quasicrystals. Dislocations in Solids, 2008, 14: 251-331.

[31] Z. H. Sun. Embedded atom method potentials for quasicrystal YbCd5.7. Submitted.

分享
Top