铀化合物的光谱常数和铀同位素选择因子研究
Study of Spectroscopic Constants of Uranium Compounds and Uranium Isotope Selectivity

作者: 张云光 :西安邮电大学理学院;

关键词: 光谱常数同位素位移CO2激光CO激光Spectroscopic Constant Isotope Shift CO2 Laser CO Laser

摘要:

我们用BLYP密度泛函和TZP基组计算了UF6分子的平衡结构和光谱常数,结果与实验值符合的很好;接着我们计算了由CO激光单独辐射下以及由CO2激光和CO激光共同辐射的UF6 + HCl光化学反应和铀同位素的选择性,发现由CO2CO激光共同辐射UF6 + HCl反应时,能够使反应速率加快,会有更好的铀同位素选择性;另外我们还计算研究了U2F6分子的光谱常数和同位素位移,预测出U2F6分子比UF6分子更加适合做激光分离铀同位素的原料。

Abstract: Firstly, we calculated the spectroscopic constant of UF6 molecule by using BLYP method and TZP basis set, which are in well agreement with the experimental data. Secondly, we studied the photochemical reaction of UF6 + HCl and the selectivity of uranium isotope under CO laser radiation and under CO2 and CO laser radiation. The results show there are better uranium isotope selectivity and response rate for CO2 and CO laser radiation than for CO laser radiation. Finally, we calculated molecular spectroscopic constant and isotope shift of U2F6, and we predict that the U2F6 molecule is better material of laser isotope separation than UF6.

文章引用: 张云光 (2012) 铀化合物的光谱常数和铀同位素选择因子研究。 应用物理, 2, 116-120. doi: 10.12677/APP.2012.24020

参考文献

[1] 肖啸菴. 同位素分离[M]. 北京: 原子能出版社, 1999.

[2] 吕百达, 匡一中. 激光分离同位素[J]. 激光杂志, 1986, 7(5): 284-290.

[3] 宋文忠, 古端. 六氟化铀低温红外光谱[J]. 核化学与放射化学, 1990, 12(3): 175-179.

[4] R. S. McDowell, L. B. Asprey and R. T. Paine. Vibrational spectrum and force field of uranium hexafluoride. Journal of Chemical Physics, 1974, 61(1): 3571-3580.

[5] D. L. Hildenbrand, K. H. Lau. Redetermination of the thermo- chemistry of gaseous UF5, UF2, and UF. Journal of Chemical Physics, 1991, 94(2): 1420-1425.

[6] R. N. Compton. On the formation of positive and negative ions in gaseous UF6.  Journal of Chemical Physics, 1977, 66(10): 4478- 4485.

[7] J. M. Eerkens. D6 Reaction chemistry of the UF6 lisosep process. Optics Communications, 1976, 18(1): 32-33.

[8] 徐葆裕, 胡建勋, 郑成法. 六氟化铀与卤化氢气体的反应动力学研究[J]. 化学学报, 1997, 55(10): 979-982.

[9] J. W. Eerkens. Spectral considerations in the laser isotope separation of Uranium Hexafluoride. Applied Physics A, 1976, 10(1): 15- 31.

[10] J. W. Eerkens. International Uranium Enrichment Conference. California: Monterrey, 1989.

[11] L. Gagliardi, B. O. Roos. Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond. Nature, 2005, 433: 848-851.

[12] G. Te, Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler. Chemistry with ADF. Journal of Computational Chemistry, 2001, 22(9): 931- 967.

[13] J. P. Perdew, K. Burke and K. M. Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865-3868.

[14] E. van Lenthe, E. J. Baerends and J. G. Snijders. Relativistic regular two component Hamiltonians. Journal of Chemical Physics, 1993, 99(6): 4597-4610.

[15] M. Kimura, V. Schomaker, D. M. Smith and B. Weinstock. Electron diffraction investigation of the hexafluorides of tungsten, osmium, iridium, uranium, neptunium, and plutonium. Journal of Chemical Physics, 1967, 48(9): 4001-4012.

分享
Top