燃料电池的挑战和新的机遇
Fuel Cells Challenges and New Opportunities

作者: 黄秋安 , 朱 斌 :湖北大学物理学与电子技术系;

关键词: 固体氧化物燃料电池无电解质燃料电池纳米复合材料复合式电子离子导体 Solid Oxide Fuel Cell Electrolyte-Free Fuel Cell Nanocomposites Composite Ion and Electron Ion Conductors

摘要: 固体氧化物燃料电池(solid oxide fuel cellsSOFCs)是复杂的电化学能源转换设备,相比于传统的火力发电系统,具有高转换效率、低排放、零噪音的优势。纵观100多年的SOFCs发展史,一系列的挑战仍阻碍着其商业化进程,如高成本和低稳定性,上述挑战主要归咎于离子电导率和催化活性所要求的高温运行条件。传统的阴极、电解质和阳极三部件结构SOFCs主要从降低电解质厚度和提高电极催化活性入手,至今,所取得的关键技术发展和科学突破仍不够。因此,我们不得不反思SOFCs 100年来发展方向和研究焦点。2010年,单部件无电解质燃料电池在瑞典皇家工学院的发明和研制成功(Adv. Funct. Mater. 21 (2011) 2465),意味着燃料电池的一个革命和商业化瓶颈的突破,该研究成果被Nature Nanotechnology选为2011年研究亮点,以FUEL CELL: Three in one编辑文章报道。

Abstract:  

Fuel cells, or specifically on solid oxide fuel cells (SOFCs) are complex electrochemical energy conversion devices, compared to conventional thermal power system with the advantages of high conversion efficiency, low emissions and zero noise. Throughout the 100 years of history of SOFCs development, a number of challenges still hamper their commercialization, such as high cost and low durability; these challenges are mainly attributed to the high temperature operating condition required by ionic conductivity and catalytic activity. Traditional SOFC with structure of cathode, electrolyte and anode three parts today focuses mainly on reducing the electrolyte thickness and enhancing electrode catalytic activity, the development of key technologies and scientific breakthroughs are still not enough. Therefore, we have to reflect that of SOFCs 100 years, the direction and focus of research. 2010, single-component electrolyte-free fuel cell was invented in the Swedish Royal Institute of Technology (Adv. Funct Mater. (2011) 2465), it means that the bottleneck of a revolution and commercialization of fuel cell breakthrough, the results were selected as a 2011 research highlights by Nature Nanotechnology titled as: “The FUEL CELL: Three in one”.

文章引用: 黄秋安 , 朱 斌 (2012) 燃料电池的挑战和新的机遇。 可持续能源, 2, 89-96. doi: 10.12677/SE.2012.24015

参考文献

[1] T. A. Damberger. Fuel cells for hospital. Journal of Power Sources, 1998, 71(1-2): 45-50.

[2] A. U. Dufour. Fuel cells—A new contributor to stationary power. Journal of Power Sources, 1998, 71: 19-25.

[3] 韩敏芳, 彭苏萍著. 固体氧化物燃料电池材料及制备[M]. 北京: 科学出版社, 2004.

[4] 衣宝廉. 燃料电池现状与未来[J]. 电源技术, 1998, 22(5): 2-6.

[5] D. V. Shailesh. Overview of DOE SECA program. NETL, 26 July 2011.

[6] 李箭. 固体氧化物燃料电池的现状与发展[J]. 中国科学基金, 2004, 3: 145-149.

[7] 李箭. 固体氧化物燃料电池: 发展现状与关键技术[J]. 功能材料与器件学报, 2007, 13(6): 683-690.

[8] S. C. Singhal. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152-153: 405- 410.

[9] D. Hart, G. Hörmandinger. Environmental benefits of transport and stationary fuel cells. Journal of Power Sources, 1998, 71(1-2): 348-353.

[10] 韩敏芳, 蒋先锋译. 高温固体氧化物燃料电池——原理、设计和应用[M]. 北京: 科学出版社, 2007.

[11] 朱庆山, 彭练, 黄文来等. 固体氧化物燃料电池密封材料的研究现状与发展趋势[J]. 无机材料学报, 2006, 21(2): 285- 290.

[12] 毛宗强, 黄建兵, 王诚等. 低温固体氧化物燃料电池研究进展[J]. 电源技术, 2008, 32(2): 75-79.

[13] S. C. Singhal. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1-4): 305-313.

[14] 马建军. 中温固体氧化物燃料电池的制备与表征[D]. 中国科学技术大学, 2007.

[15] 王志成. 基于纳米结构的中低温固体氧化物燃料电池电极的制备和性能研究[D]. 浙江大学, 2008.

[16] 闰瑞强. 中温固体氧化物燃料电池固体电解质的制备研究[D]. 中国科学技术大学, 2006.

[17] 黄秋安. 金属支撑固体氧化物燃料电池建模与诊断[D]. 华中科技大学, 2009.

[18] E. D. Wachsman, K. T. Lee. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334: 935-939.

[19] B. Zhu, R. Raza, G. Abbas and A. Singh. Electrolyte-free fuel cell constructed from one homogenous layer with mixed con- ductivity. Advanced Functional Materials, 2011, 21: 2465-2469.

[20] B. Zhu, R. Raza, H. Qin, Q. Liu and L. Fan. Fuel cells based on electrolyte and non-electrolyte separators. Energy & Environ- mental Science, 2011, 4: 2986-2992.

[21] Nature Nanotechnology Research Highlights. Three in one. Nature Nanotechnology, 2011, 6: 330-330.

[22] J. W. Veldsink, R. M. J. Van Damme, G. F. Versteeg and W. P. M. Van Swaajj. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Che- mical Engineering Journal, 1995, 57: 115-125.

[23] T. Suzuki, P. Jasinski, V. Petrovsky, H. U. Anderson and F. Dogan. Impact of anode microsturcture on solid oxid fuel cells. Journal of Electrochemical Society, 2005, 152: A527-A531.

[24] D. Han, X. J. Liu, F. R. Zeng, J. Q. Qian, T. Z. Wu and Z. L. Zhan. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Surface Science Reports, 2012, 2(462): 1-5.

[25] Q. A. Huang, R. Hui, B. W. Wang and J. J. Zhang. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta, 2007, 52(28): 8144-8164.

[26] Q. A. Huang, S. M. Park. Unified model for transient faradaic impedance spectroscopy: theory and prediction. Journal of Physical Chemistry C, 2012, 116(32): 16939-16950.

[27] E. D. Wachsman, K. T. Lee. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334: 935-939.

[28] Q. H. Liu, H. Y. Qin, R. Raza, L. D. Fan, Y. D. Li and B. Zhu. Advanced electrolyte-free fuel cells based on functional nano- composites of a single porous component: Analysis, modeling and validation. RSC Advances, 2012, 2: 8036-8040.

[29] M. T. Janicke, H. Kestenbaum, U. Hagendorf, F. Schuth, M. Fichtner and K. Schubert. The controlled oxidation of hydrogen from an explosive mixture of gases using a microstructured reactor/ heat exchanger and Pt/Al2O3 catalyst. Journal of Catalysis, 2000, 191: 282-293.

分享
Top