子晶格错位势形成的石墨烯纳米带量子点
Quantum Dots Bashed on Graphene Nanoribbons with Staggered Sublattice Potential

作者: 熊永建 :;

关键词: 石墨烯量子点电子输运Graphene Quantum Dot Transport

摘要: 根据子晶格错位势提出一种石墨烯纳米带量子点。体系在低能区的电导共振对应量子点区的准束缚态。准束缚态能量主要由量子点的长度以及量子点两端结区的子晶格错位势构形决定。

Abstract: We addressed a proposal for quantum dots of graphene nanoribbons in the presence of staggered sublattice potential. The conductance resonances within low energy range are associated with the quasibond states in the dot. The energy levels of the quasibond states depend on the dot length and the configuration of the staggered potential of the junctions.

文章引用: 熊永建 (2012) 子晶格错位势形成的石墨烯纳米带量子点。 现代物理, 2, 1-5. doi: 10.12677/mp.2012.21001

参考文献

[1] P. Avouris, Z. H. Chen and P. Vasili. Carbon-based electronics. Nature Nanotechnology, 2001, 2(10): 605-615.

[2] A. K. Geim, K. S. No-voselov. The rise of grapheme. Nature Materials, 2007, 6(3): 183-191.

[3] A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, et al. Electronic prop-erties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport. Physics Report, 2011, 503(2-3): 77-114.

[4] T. Ihn, J. Güttinger, F. Molitor, et al. Graphene sin-gle-electron transistors. Materials Today, 2010, 13(3): 44-50.

[5] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, et al. Chaotic dirac billiard in graphene quantum dots. Science, 2008, 320(5847): 356-358.

[6] C. Stampfer, E. Schurtenberger, F. Molitor, et al. Tunable graphene single electron transistor. Nano Letters, 2008, 8(8): 2378- 2383.

[7] C. Stampfer, J. Guttinger, F. Molitor, et al. Tunable coulomb blockade in nanostructured grapheme. Applied Physical Letters, 2008, 92(1): 012102-012104.

[8] J. Guttinger, C. Stampfer, S. Hellmuller, et al., Charge detection in graphene quantum dots. Applied Physical Letters, 2008, 93 (21): 212102-212104.

[9] S. Schnez, F. Molitor, C. Stampfer, et al. Observation of excited states in a graphene quantum dot. Applied Physical Letters, 2009, 94(1): 012107-012109.

[10] J. Guttinger, T. Frey, C. Stampfer, et al. Spin states in graphene quantum dots. Applied Physical Letters, 2010, 105(11): 116801- 116804.

[11] A. H. C. Neto, F. Guinea, N. M. R. Peres, et al. The electronic properties of grapheme. Reviews of Modern Physics, 2009, 81 (1): 109-162.

[12] P. G. Silvestrov, K. B. Efetov. Quantum dots in graph-eme. Phy- sical Review Letters, 2007, 98(1): 016802-016806.

[13] B. Trauzettel, D. V. Bulaev, D. Loss, et al. Spin qubits in graphene quan-tum dots. Nature Physics, 2007, 3(3): 192-196.

[14] P. Hewageegana, V. Apalkov. Electron localization in graphene quantum dots. Physical Review B, 2008, 77(24): 245426-245434.

[15] Z. F. Wang, Q. W. Shi, Q. X. Li, et al. Z-shaped graphene nano- ribbon quantum dot device. Ap-plied Physical Letters, 2007, 91 (5): 053109-053112.

[16] Z. F. Wang, Q. X. Li and Q. W. Shi. Ballistic rectification in a Z-shaped graphene nanoribbon junction. Applied Physical Letters, 2008, 92(13): 223116-223116.

[17] Z. P. Xu, Q.-S. Zhen and G.-H. Chen. Elementary building blocks of graphene-nanoribbon-based electronic devices. Ap-plied Physical Letters, 2007, 90(22): 223115-223118.

[18] Y.-J. Xiong, B.-K. Xiong. Resonant transport through graphene nanoribbon quan-tum dots. Journal of Applied Physics, 2011, 109 (10): Article ID 103707.

[19] G. Giovannetti, P. A. Khomyakov, G. Brocks, et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B, 2007, 76(7): Article ID 073103.

[20] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, et al. Substrate-induced bandgap opening in epitaxial grapheme. Nature Materials, 2007, 6(10): 770-775.

[21] Y.-T. Zhang, Q.-F. Sun, X. C. Xie. The effect of disorder on the valley-dependent transport in zigzag grapheme nanoribbons. Jour- nal of Applied Physics, 2011, 109(12): Article ID 123718.

[22] Z. H. Qiao, et al. Spin-polarized and valley helical edge modes in graphene nanoribbons. Physical Review B, 2011, 84(3): Article ID 035431.

[23] H. Xu, T. Heinzel, M. Evaldsson, et al. Magnetic barriers in graphene nanoribbons: Theoretical study of transport properties. Physical Review B, 2008, 77(24): Article ID 245401.

分享
Top