碳纳米管修饰氧化镍三维复合型超级电容器
CNT Modified NiO/Ni/Si-MCP Three-Dimensional Structure for Hybrid Supercapacitor

作者: 赖佳 * , 刘涛 , 李劢 , 徐少辉 , 王连卫 , 郭平生 :;

关键词: 复合型超级电容器微通道板碳纳米管Hybrid Supercapacitor Microchannel Plates (MCP) Carbon Nanotubes

摘要:
本文研究了以硅微通道(Si-MCP)为衬底,碳纳米管(CNTs)和氧化镍(NiO)为电极材料的三维(3D)复合型超级电容器。利用电化学刻蚀的方法制备得到硅微通道,用无电电镀方法在MCP表面上均匀镀镍,并通过烘干自然氧化得到NiO/Ni/Si-MCP结构。进一步通过电泳在NiO/Ni/Si-MCP结构上制备CNTs层。用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)表征结构和表面形貌,用电化学测试,如循环伏安法、计时电位法和循环特性表征其电化学和电容性质。结果表明:复合电极材料能够获得较高的比电容4.1 F•cm–2,较之单一的NiO电极有明显的提高。并且在2000次循环测试后,比电容损失率仅为7.3%,说明复合电极具有较好的稳定性。

Abstract:
This paper reports the preparation of carbon nanotubes (CNTs) films on NiO/Ni/Si-silicon microchannel plates (MCP) for three-dimensional (3D) hybrid supercapacitors. The silicon MCPs are prepared by electrochemical etching and the NiO/Ni/Si-MCP structure is obtained by baking after deposition a nickel film on the sidewall of the silicon MCP by electroless deposition. The thin films of CNTs are fabricated on the structure by electrophoretic deposition (EPD). The materials are characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). It is found that all the areas on the NiO/Ni/Si-MCP structure are homogeneously covered by carbon nanotubes. The electrochemical properties of the 3D structure are investigated by cyclic voltammetry (CV), chronopotentiometry, and cycle measurements. The structure exhibits excellent capacitive behavior with a specific capacitance of 4.1 F•cm–2, much higher than NiO/Ni/Si-MCP structure. After 2000 cycles, capacitance loss of 7.3% indicated the great stability of the structure.

文章引用: 赖佳 , 刘涛 , 李劢 , 徐少辉 , 王连卫 , 郭平生 (2012) 碳纳米管修饰氧化镍三维复合型超级电容器。 纳米技术, 2, 1-6. doi: 10.12677/nat.2012.21001

参考文献

[1] E. E. Kalu, T. T. Nwoga, V. Srinivasan, et al. Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. Journal of Power Sources, 2001, 92(1-2): 163-167.

[2] A. Burke. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources, 2000, 91(1): 37-50.

[3] B. E. Conway. Electrochemical supercapacitors: Scientific fundamentals and technological applications. Berlin: Springer, 1999: 1-698.

[4] V. Aravindan, M. V. Reddy, S. Madhavi, et al. Hybrid supercapacitor with nano-TiP2O7 as intercalationelectrode. Journal of Power Sources, 2011, 196(20): 8850-8854.

[5] T. Liu, H. Y. Zhang, F. Wang, et al. Three-dimensional supercapacitors composed of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plates. Materials Science and Engineering B, 2011, 176(5): 387-392.

[6] E. Frackowiak, S. Delpeux, K. Jurewicz, et al. Enhanced capaci- tance of carbon nanotubes through chemical activation. Chemical Physics Letter, 2002, 361(1-2): 35-41.

[7] A. R. Boccaccini, J. Cho, J. A. Roether, et al. Electrophoretic deposition of carbon nanotubes. Carbon, 2006, 44(15): 3149- 3160.

[8] C. S. Du, N. Pan. Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006, 160(2): 1487-1494.

[9] F. J. Miao, B. R. Tao, P. L. Ci, et al. 3D Ordered NiO/Silicon MCP array electrode materials for electrochemical supercapacitors. Material Research Bulletin, 2009, 44(9): 1920-1925.

[10] D. Yuan, P. L. Ci, F. Tian, et al. Large-size P-type silicon microchannel plates prepared by photoelectrochemical etching. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(3): Article ID 033012.

分享
Top