一种新型铝空气电池用铝合金阳极材料的研究
Study on a New Kind of Al Alloy Anode Material for Aluminum-Air Battery

作者: 李晓翔 * , 马正青 , 滕昭阳 :;

关键词: 铝合金阳极正交设计法析氢速率稳定电位<br>Aluminum Alloy Anode Orthogonal Design Method Hydrogen Evolution Rate Stable Potential

摘要: 采用正交试验法设计出一种铝–空气电池用新型多元铝合金阳极材料,研究了几种添加元素对铝合金阳极材料在4 mol/L NaOH + 15 g/L Na2SnO3溶液中的析氢速率和电化学性能的影响,得出综合性能最佳的铝合金阳极材料成分配比。实验采用排水取气法来测定材料的析氢速率,利用LK3200电化学工作站测试了不同合金化元素Sn、Pb、Ga对铝合金阳极试样电极电位的影响。结果表明:在50˚C的条件下,影响铝合金阳极材料析氢速率的顺序为:Pb > Sn > Ga;同时,在50˚C,电流密度为200 mA/cm2的条件下,影响材料稳定电位的顺序为:Sn > Pb > Ga。综合考虑铝合金阳极材料的析氢速率和稳定电位并验证后得出:最优组合是 Al-0.2Sn-0.02Ga-0.4Pb。

Abstract: A new kind of Al alloy anode material for aluminum-air battery was developed by orthogonal design, and the effect of additive elements on hydrogen evolution rate and electrochemical properties in 4 mol/L NaOH + 15 g/L Na2SnO3 solution was studied. Then the best performance ratios of aluminum alloy anode material composition can be finally got. The self-corrosion rate of Al alloy anode was studied by methods of recovering H2 gas and discharging water and the electrochemical properties were tested by LK3200 electrochemical workstation. The results show that the greatest impact on the hydrogen evolution rate of aluminum alloy anode material at 50˚C is Pb, followed by Sn, Ga; at the same time, the greatest impact on the stable potential at 50˚C and 200 mA/cm2 is Sn, followed by Pb, Ga. After con-sidering and verifying the stable potential and hydrogen evolution rate of aluminum alloy anode, we can obtain the optimal combination: Al-0.2Sn-0.02Ga-0.4Pb.

文章引用: 李晓翔 , 马正青 , 滕昭阳 (2012) 一种新型铝空气电池用铝合金阳极材料的研究。 材料科学, 2, 52-57. doi: 10.12677/ms.2012.21009

参考文献

[1] 余东梅, 于美秋, 冉静. 电池用铝阳极材料的开发与应用[J].铝加工, 2005, 3: 35-38.

[2] 魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984.

[3] 陆柱. 可持续发展战略与腐蚀防护技术[J]. 腐蚀与防护, 1997, 18(2): 3.

[4] 黄淑菊. 金属腐蚀与防护[M]. 西安: 西安交通大学出版社, 1988.

[5] Q. F. Li, N. J. Bjerrum. Aluminum as anode for energy storage and conversion: A review. Journal of Power Sources, 2002, 110 (1): 1-10.

[6] Z. Q. Ma, X. X. Li. The study on microstructure and electrochemical properties of Al-Mg-Sn-Ga-Pb alloy anode material for Al/AgO battery. Journal of Solid State Electrochemistry, 2010, 15(11-12): 2601-2610.

[7] 马正青. 新型铝合金微观组织对电化学性能的影响[J]. 兵器材料科学工程, 2001, 24(6): 89-95.

[8] 马正青. Al-Bi-Pb-In-Ga合金牺牲阳极的组织与电化学性能研究[J]. 腐蚀与防护, 2002, 23(10): 430-432.

[9] C. F. Schreiber, R. W. Murray. Effect of hostile marine environments on the Al-Zn-In-Si sacrificial anode. Material Performance, 1998, 27(12): 70.

[10] 房振乾, 刘文西, 陈玉如. 铝空气燃料电池的研究进展[J]. 兵器材料科学与工程, 2003, 26(2): 67-73.

[11] D. D. Macdonald, C. English. Development of anodes for aluminum/air batteries-solution phase inhibition of corrosion. Jour- nal of Applied Electro-Chemistry, 1990, 20: 405-417.

[12] 桂长清. 铝空气电池的前景[J]. 电池, 2002, 32(5): 305-308.

[13] 鹿玉理. 中性电解质溶液铝–空气电池[J]. 电池, 1979, 2: 15.

[14] 史鹏飞, 尹鸽平, 夏保佳. 碱性铝–空气电池用铝合金阳极的研究[J]. 中国化学与物理电源学会第十九届年会论文集, 1990: 1-8.

[15] P. F. Shi, G. P. Yin, B. J. Xia, et al. Studies on the anodic behavior of aluminum electrodes in alkaline solution. Journal of Po- wer Sources, 1993, 45(1): 105-109.

[16] 史鹏飞, 尹鸽平, 夏保佳. 1 kW铝空气电池组单体电池的研究[J]. 中国化学会第六届全国电化学会议论文摘要集(3), 1991: 1-3.

[17] 任学佑. 铝/空气电池发展(上)[J]. 电池, 1994, 24(6): 284-286.

[18] 林顺岩. 高性能铝合金阳极材料的研究与开发[J]. 铝加工, 2002, 25(2): 69.

[19] 马正青, 黎文献, 肖于德等. 新型铝合金阳极电化学性能与组织研究[J]. 材料保护, 2002, 35(5): 1012.

[20] 袁传军, 梁成浩, 安晓雯. Ga对Al-Zn-In合金牺牲阳极电化学性能影响[J]. 大连理工大学学报, 2007, 44(4): 502-506.

分享
Top