估计GM(1,1)模型中参数的LS-SVM方法及其在负荷预测中的应用
Estimation of GM(1,1) Model Parameter Based on LS-SVM Algorithm and Application in Load Forecasting

作者: 周德强 :;

关键词: 负荷预测参数估计GM(11)模型LS-SVM算法Load Forecasting Parameter Estimation GM(11) Model Least Square Support Vector Machines Method

摘要: 为克服利用传统最小二乘法估计GM(1,1)模型参数的缺陷,改善GM(1,1)模型在中长期负荷预测中的精度,提出了基于LS-SVM算法估计GM(1,1)模型中参数的方法。该方法根据GM(1,1)灰色差分方程的特点,构造以背景值序列和原始序列为训练样本的灰色LS-SVM,将GM(1,1)模型参数的估计问题转化为灰色LS-SVM的参数估计问题,依据LS-SVM算法求得灰色LS-SVM的参数,进而得到GM(1,1)模型的参数估计。利用本文方法估计GM(1,1)模型的参数,方法上遵循了结构风险最小化原则,算法实现上具有速度快,稳健性强的优点,适合GM(1,1)小样本建模的特点。将本文方法应用于中长期负荷预测,通过与传统的GM(1,1)模型预测效果的对比分析,验证了该模型的有效性和优越性。

Abstract: In order to overcome the defects of traditional parameters estimation method in GM(1,1) model by means of least square procedure and enhance the forecasting accuracy of GM(1,1) in medium and long-term load forecasting precision, an improvement GM(1,1) model based on LS-SVM algorithm is presented. This method constructs the grey LS-SVM with background value and raw data series as the training sample ac-cording to the character of grey difference equation, converts the GM(1,1) model parameter estimation prob-lem into a grey LS-SVM parameter estimation problem, then the regression parameters in the grey LS-SVM are solved based on the LS-SVM algorithm and the GM(1,1) model parameters estimation are also obtained. Using this method in this paper to estimate the GM(1,1) model, the method follows structural risk minimiza-tion principles, algorithm has the advantage of fast speed, strong robustness, suitable for GM(1,1) model of small samples. This method is applied to long-term load forecasting, compared with forecasting effect analy-sis of traditional GM(1,1) model to prove the validity and the superiority of the model.

文章引用: 周德强 (2012) 估计GM(1,1)模型中参数的LS-SVM方法及其在负荷预测中的应用。 现代管理, 2, 45-49. doi: 10.12677/mm.2012.21009

参考文献

[1] 徐军华, 刘天琪. 基于小波分解和人工神经网络的短期负荷预测[J]. 电网技术, 2004, 28(8): 30-33.

[2] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6): 55-59.

[3] 吴景龙, 杨淑霞, 刘承水. 基于遗传算法优化参数的支持向量机短期负荷预测方法[J]. 中南大学学报: 自然科学版, 2009, 40(1): 180-184.

[4] 杨延西, 刘丁. 基于小波变换和最小二乘支持向量机的短期电力负荷预测[J]. 电网技术, 2005, 29(13): 60-64.

[5] 马文晓, 白晓民, 沐连顺. 基于人工神经网络和模糊推理的短期负荷预测方法[J]. 电网技术, 2003, 27(5): 29-32.

[6] 俞明生, 冯桂宏, 杨祥. 组合优化灰色模型在中长期电力负荷预测中的应用[J]. 沈阳工业大学学报, 2007, 29(2): 450- 453.

[7] 牛东晓, 贾建荣. 改进GM(1,1)模型在电力负荷预测中的应用[J]. 电力科学与工程, 2008, 24(4): 28-30.

[8] 王成山, 杨军, 张崇见. 灰色系统理论在城市年用电量预测中的应用——不同预测方法的分析比较[J]. 电网技术, 1999, 23(2): 15-18.

[9] 苗增强, 李婷, 陈芳等. 基于最小一乘法的组合赋权法在中长期负荷预测中的应用[J]. 电力系统保护与控制, 2009, 37(2): 28-31.

[10] 陈超英. 累加生成的改进和GM(1,1,t)灰色模型[J]. 数学的实践与认识, 2007, 37(2): 105-109.

[11] 何文章, 宋国乡. 基于遗传算法估计灰色模型中的参数[J]. 系统工程学报, 2005, 20(4): 432-436.

[12] V. N. Vapnik. The nature of statistical learning theory. Heidellberg: Springer Verlag, 1995.

[13] 安德洪, 韩文秀, 岳毅宏. 组合预测法的改进及其在负荷预测中的应用[J]. 系统工程与电子技术, 2006, 26(6): 842-844.

[14] J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classfiers. Neural Processing Letters, 1999, 9(3): 293- 300.

分享
Top