﻿ 基于模糊综合评价法的河道整治工程评价

# 基于模糊综合评价法的河道整治工程评价Evaluation of River Regulation Engineering Based on Fuzzy Comprehensive Evaluation

Abstract: The comprehensive river improvement project has become one of the important tasks in the process of urban and rural construction in recent years. In order to promote the development of the comprehensive river improvement project to a higher quality, it is necessary to conduct a comprehensive evaluation of the completed projects. According to the characteristics of river improvement pro- jects, this paper comprehensively considers the influencing factors in river improvement projects, and establishes a multi-level evaluation index system. The multi-level fuzzy comprehensive evaluation method based on Fuzzy mathematics is selected as the evaluation method, and the Analytic Hierarchy Process (AHP) is used to determine the index weight. Taking a village-level river course in Shanghai as an example, various indicators before and after the improvement project were counted and relevant experts were invited to assist in the evaluation. After fuzzy comprehensive evaluation, it is concluded that the evaluation result of the project is good and conforms to the actual project. The index system and evaluation methods established in this paper can provide references for the evaluation of river improvement projects.

1. 引言

2. 评价指标体系建立 [5] - [12]

2.1. 指标选取原则

1) 完整性

2) 代表性

3) 可操作性

2.2. 评价指标体系

Table 1. Evaluation system of river improvement project

3. 模糊综合评价法和层次分析法 [13] [14] [15] [16]

3.1. 模糊综合评价一般步骤 [13]

1) 确定因素集 $U=\left\{{u}_{1},{u}_{2},\cdots ,{u}_{n}\right\}$，即确定影响待评价对象评价结果的n种因素。对于因素较多且分类明确的情况，可将指标进行分类，形成多级评价体系，将因素集 $U=\left\{{u}_{1},{u}_{2},\cdots ,{u}_{n}\right\}$ 分为k组，使得 $U=\underset{i=1}{\overset{k}{\cup }}{U}_{i}$${U}_{i}\cap {U}_{j}=\varnothing \text{\hspace{0.17em}}\left(i\ne j\right)$，称 $U=\left\{{u}_{1},{u}_{2},\cdots ,{u}_{n}\right\}$ 为一级因素集。其中 ${U}_{i}=\left\{{u}_{1}^{i},{u}_{2}^{i},\cdots ,{u}_{ni}^{i}\right\}\text{\hspace{0.17em}}\left(i=1,2,\cdots ,k\right)$$\underset{i=1}{\overset{n}{\sum }}{n}_{i}=n$，称为二级因素集。

2) 确定评判集 $V=\left\{{v}_{1},{v}_{2},\cdots ,{v}_{m}\right\}$，即确定评价对象评价结果的等级和标准。

3) 进行各层次单因素评价，得到各层次模糊关系矩阵 $R={\left({r}_{ij}\right)}_{n×m}$

$R=\left(\begin{array}{ccc}{r}_{11}& \dots & {r}_{1m}\\ ⋮& \ddots & ⋮\\ {r}_{n1}& \cdots & {r}_{nm}\end{array}\right)$ (1)

4) 确定各层次指标的权重 $A=\left\{{a}_{1},{a}_{2},\cdots ,{a}_{n}\right\}$，将权重和模糊关系矩阵计算，得到综合评价结果 $\underset{˜}{B}=A\circ R$

3.2. 层次分析法确定权重的一般步骤

1) 建立层次模型

2) 构造判断矩阵

$A=\left(\begin{array}{l}{b}_{11}\text{}{b}_{12}\text{}\cdots \text{}{b}_{1n}\\ {b}_{21}\text{}{b}_{21}\text{}\cdots \text{}{b}_{21}\\ ⋮\text{}⋮\text{}\ddots \text{}⋮\\ {b}_{n1}\text{}{b}_{n1}\text{}\cdots \text{}{b}_{nn}\end{array}\right)$ (2)

3) 单层次排序

Table 2. Judgment matrix value definition

4) 一致性检验

$CR=\frac{CI}{RI}$ (3)

Table 3. RI value definition table

$CR<0.1$ 时，即可认为该判断矩阵满足一致性要求，否则需要调整判断矩阵的取值。

4. 评价算例

Table 4. Subordination degree of each index before and after project implementation

Table 5. Subordination degree of project construction index

Table 6. Judgment matrix for the weights of second-level indicators

Table 7. Judgment matrix for the weights of first-level indicators

Table 8. Judgment matrix for the weights of criterion-level

Table 9. The calculation result of the subordination degree of criterion-level

Table 10. Subordination degree of effect of the comprehensive river improvement project

5. 结论

[1] 蔡聪, 朱竟益, 徐玉良, 等. 基于主成分分析与模糊综合评价模型的昆山市老城区河道水质评价[J]. 水电能源科学, 2015, 33(11): 14-17.

[2] 王菁菁. 杭州市城市河道生态护岸景观营造及评价研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2016.

[3] 姜志成. 基于AHP——模糊综合评判法的河道整治工程社会影响评价[J]. 黑龙江科技信息, 2016(26): 218-219.

[4] 程军蕊, 徐继荣, 郑琦宏, 等. 宁波市城区河道水环境综合整治效果评价方法及应用[J]. 长江流域资源与环境, 2015, 24(6): 1060-1066.

[5] 王悦. 城市景观河道健康评价指标体系研究[D]: [硕士学位论文]. 上海: 同济大学, 2009.

[6] 郑靓. 兴城市头道沟小流域河道治理效果评价研究[D]: [硕士学位论文]. 长春: 东北师范大学, 2014.

[7] 杨建. 中小河流治理工程后评价模型及应用研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2014.

[8] 陈升. 城市河道综合整治项目后评价研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2018.

[9] 韩黎. 生态河道治理模式及其评价方法研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2010.

[10] 梁晶, 祁毅, 曹大贵. 城市内河整治的综合效益评价体系研究[J]. 现代城市研究, 2010(9): 65-71.

[11] 刘会文. 基于模糊综合评价和BP神经网络的景观河道水质评价研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2015.

[12] 王鹏. 城市河道生态景观建设的评价指标体系构建研究[J]. 黑龙江生态工程职业学院学报, 2017, 30(2): 4-5.

[13] 张铁男, 李晶蕾. 对多级模糊综合评价方法的应用研究[J]. 哈尔滨工程大学学报, 2002, 23(3): 132-135.

[14] 谢季坚, 刘承平. 模糊数学方法及其应用[M]. 武汉: 华中理工大学出版社, 2005.

[15] 金菊良, 魏一鸣, 丁晶. 基于改进层次分析法的模糊综合评价模型[J]. 水利学报, 2004(3): 65-70.

[16] 吕跃进. 基于模糊一致矩阵的模糊层次分析法的排序[J]. 模糊系统与数学, 2002(2): 79-85.

Top