分数阶微分方程的矩阵级数解
Metric Series Solutions of Fractional Differential Equations
关键词: Mittage-Leffler型函数; 矩阵级数; 分数阶微分方程; Mittage-Leffler Type Functions; Metric Series; Fractional Differential Equations
摘要:Abstract: In this paper, we introduce a Mittage-Leffler type series for metric of n order. We obtain Mittage- Leffler type metric series solutions of initial value problems for fractional differential equations system. Fur- ther, we obtain fundamental solution metric, which are denoted by Mittage-Leffler type metric series.
文章引用: 万桂华 , 张淑琴 , 苏新卫 (2012) 分数阶微分方程的矩阵级数解。 理论数学, 2, 17-22. doi: 10.12677/pm.2012.21004
参考文献
[1] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006.
[2] K. Miller, B. Ross. An introduction to the fractional calculus and fractional differential equations. New York: Wiley, 1993.
[3] I. Podlubny. Fractional differential equations. San Diego: Academic Press, 1999.
[4] J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado. Advances in fractional calculus: Theoretical developments and applications in physics and engineering. Berlin: Springer, 2007.
[5] R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 2000, 339(1): 1-77.
[6] 代群, 李辉来. 几类分数阶微分方程解的结构[J]. 吉林大学学报, 2011, 49(3): 580-586.
[7] 丁同仁, 李承治. 常微分方程教程(第二版)[M]. 北京: 高等教育出版社, 2004.
[8] 张锦炎. 常微分方程几何理论与分支问题[M]. 北京: 北京大学出版社, 2000.
[9] 王萼芳. 高等代数教程[M]. 北京: 清华大学出版社, 1997.