分数阶微分方程的矩阵级数解
Metric Series Solutions of Fractional Differential Equations

作者: 万桂华 , 张淑琴 , 苏新卫 :;

关键词: Mittage-Leffler型函数矩阵级数分数阶微分方程Mittage-Leffler Type Functions Metric Series Fractional Differential Equations

摘要:
在本文中,我们引进了n阶矩阵的Mittage-Leffler型级数。我们得到了分数阶微分方程组初值问题的Mittage-Leffler型矩阵级数解。而且,我们得到了分数阶微分方程组的用Mittage-Leffler型矩阵级数所表示的基解矩阵。

Abstract:
In this paper, we introduce a Mittage-Leffler type series for metric of n order. We obtain Mittage- Leffler type metric series solutions of initial value problems for fractional differential equations system. Fur- ther, we obtain fundamental solution metric, which are denoted by Mittage-Leffler type metric series.

文章引用: 万桂华 , 张淑琴 , 苏新卫 (2012) 分数阶微分方程的矩阵级数解。 理论数学, 2, 17-22. doi: 10.12677/pm.2012.21004

参考文献

[1] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006.

[2] K. Miller, B. Ross. An introduction to the fractional calculus and fractional differential equations. New York: Wiley, 1993.

[3] I. Podlubny. Fractional differential equations. San Diego: Academic Press, 1999.

[4] J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado. Advances in fractional calculus: Theoretical developments and applications in physics and engineering. Berlin: Springer, 2007.

[5] R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 2000, 339(1): 1-77.

[6] 代群, 李辉来. 几类分数阶微分方程解的结构[J]. 吉林大学学报, 2011, 49(3): 580-586.

[7] 丁同仁, 李承治. 常微分方程教程(第二版)[M]. 北京: 高等教育出版社, 2004.

[8] 张锦炎. 常微分方程几何理论与分支问题[M]. 北京: 北京大学出版社, 2000.

[9] 王萼芳. 高等代数教程[M]. 北京: 清华大学出版社, 1997.

分享
Top