一个新的半离散Hilbert型不等式
A New Half-Discrete Hilbert’s Inequality

作者: 谢子填 * , 曾峥 :;

关键词: 半离散Hilbert不等式lder不等式Half-Discrete Hilbert’s Inequalitylder’s Inequality

摘要: 应用权函数,给出一个新的有最佳常数因子的半离散Hilbert型不等式。同时给出他的等价式。

Abstract: In this paper, by introducing some parameters and estimating the weight function, we give a new half-discrete Hilbert-type inequality with a best constant factor. The equivalent inequality forms is considered.

文章引用: 谢子填 , 曾峥 (2012) 一个新的半离散Hilbert型不等式。 理论数学, 2, 10-16. doi: 10.12677/pm.2012.21003

参考文献

[1] G. H. Hardy. Note on a theorem of Hilbert concerning series of positive term. Proceedings of London Mathematical Society, 1925, 23(2): XLV-XLVI.

[2] 杨必成. 一个半离散的Hilbert不等式[J]. 广东第二师范学院学报, 2011, 31(3): 1-7.

[3] 杨必成. 一个推广的非齐次核的Hilbert 型积分不等式[J]. 吉林大学学报(理学版), 2010, 48(5): 719-722.

[4] Z. T. Xie, Z. Zeng. A Hilbert-type integral inequality whose kernel is a homogeneous form of degree-3. Journal of the Mathematical Analysis Application, 2008, 339: 324-331.

[5] 谢子填, 曾峥. 一个新的有最佳常数因子的~Hilbert不等式[J]. 湘潭大学自然科学学报, 2010, 32(3): 1-4.

[6] 谢子填, 曾峥. 一个新的零齐次核的~Hilbert 型积分不等式[J]. 西南大学学报(自然科学版), 2011, 23(8): 137-141.

[7] 谢子填, 付本路. 一个新的有最佳常数的Hilbert型积分不等式[J]. 武汉大学学报(理学版), 2009, 55(6): 637-640.

[8] 谢子填, 杨必成, 曾峥. 一个新的实齐次核的Hilbert 型积分不等式[J]. 吉林大学学报(理学版), 2010, 48(6): 941-945.

[9] 曾峥, 谢子填. 一个新的有最佳常数因子的Hilbert型积分不等式[J]. 华南师范大学学报, 2010, 3: 31-33.

[10] Z. Zeng, Z. T. Xie. A Hilbert’s inequality with a best constant factor. Journal of Inequalities and Applications, 2009: Article ID 820176.

[11] Z. T. Xie, Z. Zeng. A Hilbert-type inequality with some parameters and the integral in whole plane. Advances in Pure Mathematics, 2011, 1(3): 84-89.

[12] Z. Zeng, Z. T. Xie. On a new Hilbert-type integral inequality with the integral in whole plane. Journal of Inequalities and Applications, 2010: Article ID 256796.

[13] Z. T. Xie, Z. Zeng. The Hilbert-type integral inequality with the system kernel of-λ degree homogeneous form. Kyungpook Mathematical Journal, 2010, 50: 297-306.

[14] Z. T. Xie, Z. Zeng. A Hilbert-type integral inequality with a non-homogeneous form and a best constant factor. Advances and Applications in Mathematical Sciences, 2010, 3(1): 61-71.

[15] 曾峥, 谢子填. 一个新的有实齐次核的Hilbert 型积分不等式及其逆[J]. 浙江师大学报(自然科学版), 2010, 33(2): 398-401.

[16] 谢子填, 曾峥. 一个实齐次核的~Hilbert 型积分不等式及其等价形式[J]. 浙江大学学报(理学版), 2011, 38(3): 266-270.

分享
Top