关于遗传狭义拟仿紧的逆极限
On Inverse Limits of Hereditarily Strict Qua-si-Paracompactness

作者: 赵斌 :;

关键词: 逆极限空间遗传狭义拟仿紧遗传κ-狭义拟仿紧Inverse Limit Space Hereditarily Strict Quasi-Paracompact Hereditarily κ-Strict Qua-si-Paracompact

摘要:
给出了遗传狭义拟仿紧的等价刻划,利用等价刻划证明了在遗传κ-狭义拟仿紧条件下,遗传狭义拟仿紧性可被其逆极限空间保持。

Abstract:
The equivalent characterizations of hereditarily strict quasi-paracompactness are given, and by us- ing these, we proved that the hereditarily strict quasi-paracompactnes can be preserved by the inverse limit spaces under the assumption of hereditarily κ-strict quasi-paracompactness.

文章引用: 赵斌 (2012) 关于遗传狭义拟仿紧的逆极限。 理论数学, 2, 5-9. doi: 10.12677/pm.2012.21002

参考文献

[1] K. Chiba. Normality of inverse limits. Mathematical Japonica, 1990, 35(5): 959-970.

[2] K. Chiba. Covering properties of inverse limits. Q & A in General Topology, 2002, 20: 101-114.

[3] K. Chiba, Y. Yajima. Covering properties of inverse limits II. Topology Proceedings, 2003, 27: 79-100.

[4] 蒋继光, 张树果. 拟仿紧性与乘积空间[J]. 数学年刊, 2005, 26A(6): 771-776.

[5] 蒋继光, 张树果. 关于狭义拟仿紧性空间[J]. 数学年刊, 2003, 24A(4): 453-458.

[6] 朱培勇. 正规狭义拟仿紧性空间的乘积性质[J]. 数学年刊, 2001, 22A(3): 369-374.

[7] 赵斌, 江守礼. 遗传 -可膨胀与遗传几乎 -可膨胀空间的逆极限[J]. 山东大学学报, 2007, 42(7): 87-90.

[8] Y. Aoki. Orthocompactness of inverse limits and products. Tsukuba Journal of Mathematics, 1980, 4: 241-255.

[9] 刘应明. 一类包含弱仿紧空间和次仿紧空间的拓扑空间[J]. 数学学报, 1977, 20: 212-214.

[10] R. Engelking. General topology. Berlin: Heldermann Verlag, 1989.

[11] 葛英. 关于狭义拟仿紧空间的两个问题[J]. 南京大学学报, 1998, 34(1): 16-20.

分享
Top