五阶偏微分方程的时间多区域时空谱方法
Multi-Domain Space-Time Spectral Method in Time for Solving Fifth-Order Partial Differential Equation

作者: 余荣玉 :上海大学理学院,上海;

关键词: 五阶偏微分方程时空谱方法Legendre-Petrov-Galerkin 方法Legendre-Tau 方法Chebyshev-Gauss-Lobatto 插值Fifth-Order Partial Differential Equation Space-Time Spectral Method Legendre-Petrov-Galerkin Method Legendre-Tau MethodChebyshev-Gauss-Lobatto Interpolation

摘要:
本文针对五阶偏微分方程提出了时间多区域时空谱方法. 该方法在空间方向上采用 Legendre-Petrov-Galerkin 方法, 在时间方向上采用多区域的 Legendre-tau 方法, 即: 把时间区间分成多个区域, 并在每个区域上采用 Legendre-tau 方法. 同时, 本文给出了该方法在线性问题上的误差分析, 选取适当的基函数使得系数矩阵稀疏, 对非线性方程中的非线性项采用在 Chebyshev-Gauss- Lobatto 点上的插值进行计算. 最后通过一些数值算例验证了算法的有效性.

Abstract: In this paper, we propose the multi-domain space-time spectral method in time for the fifth-order partial differential equation. Legendre-Petrov-Galerkin method is applied in space direction, and multi-domain Legendre-tau method is applied in time direction, that is: dividing the time interval into multiple domains and Legendre-tau method is applied in each domain. At the same time, the error analysis of the method on linear problems is given in this paper, and we choose proper basis functions to make the coefficient matrix sparse, the nonlinear term for the nonlinear equation is computed by interpolation through Chebyshev-Gauss-Lobatto points. Finally, some numerical examples are given to verify the effectiveness of the algorithm.

文章引用: 余荣玉 (2021) 五阶偏微分方程的时间多区域时空谱方法。 理论数学, 11, 1031-1047. doi: 10.12677/PM.2021.116117

参考文献

[1] Xu, Y. and Shu, C.W. (2005) Local Discontinuous Galerkin Methods for the Kuramoto- Sivashinsky Equations and the Ito-Type Coupled KdV Equations. Computer Methods in Ap- plied Mechanics and Engineering, 195, 3430-3447.
https://doi.org/10.1016/j.cma.2005.06.021

[2] 房少梅, 吴荣俏. 一类广义的KdV方程的显式差分解[J]. 应用数学学报, 2007, 30(2): 368-376.

[3] Khanal, N., Sharma, R., Wu, J. and Yuan, J.M. (2009) A Dual-Petrov-Galerkin Method for Extended Fifth-Order Korteweg-de Vries Type Equations. Conference Publications, 2009,442-450.

[4] Darvishi, M. and Khani, F. (2009) Numerical and Explicit Solutions of the Fifth-Order Korteweg-de Vries Equations. Chaos, Solitons and Fractals, 39, 2484-2490.
https://doi.org/10.1016/j.chaos.2007.07.034

[5] Edson, P. and Eben, M. (2013) Discrete Singular Convolution Method for Numerical Solutions of Fifth Order Korteweg-De Vries Equations. Journal of Applied Mathematics Physics, 1, 5-15.
https://doi.org/10.4236/jamp.2013.17002

[6] Chen, W., Li, J., Miao, C. and Wu, J. (2009) Low Regularity Solutions of Two Fifth-Order KDV Type Equations. Journal d’Analyse Mathematique, 107, 221-238.
https://doi.org/10.1007/s11854-009-0009-0

[7] Kenig, C.E. and Pilod, D. (2015) Well-Posedness for the Fifth-Order KdV Equation in the Energy Space. Transactions of the American Mathematical Society, 367, 2551-2612.
https://doi.org/10.1090/S0002-9947-2014-05982-5

[8] Gao, X. and Zheng, X. (2016) Unique Continuation Property for a Class of Fifth-Order Korteweg-de-Vries Equations. Chinese Journal of Engineering Mathematics, 33, 541-550.

[9] Xu, Y. and Shu, C.W. (2004) Local Discontinuous Galerkin Methods for Three Classes of Nonlinear Wave Equations. Journal of Computational Mathematics, 22, 250-274.

[10] Cheng, Y. and Shu, C.W. (2008) A Discontinuous Galerkin Finite Element Method for Time Dependent Partial Differential Equations with Higher Order Derivatives. Mathematics of Com- putation, 77, 699-730.
https://doi.org/10.1090/S0025-5718-07-02045-5

[11] 赵小红, 李德生. 一类组合的五阶非线性偏微分方程的一种显式差分格式[J]. 科学技术与工程, 2008, 8(3): 750-752.

[12] Shen, J. (2003) A New Dual-Petrov-Galerkin Method for Third and Higher Odd-Order Differ- ential Equations: Application to the KDV Equation. SIAM Journal on Numerical Analysis, 41, 1595-1619.
https://doi.org/10.1137/S0036142902410271

[13] Ma, H.P. and Sun, W.W. (2000) A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations. SIAM Journal on Numerical Analysis, 38, 1425-1438.
https://doi.org/10.1137/S0036142999361505

[14] Tang, J. and Ma, H. (2002) Single and Multi-Interval Legendre τ -Methods in Time for Parabol- ic Equations. Advances in Computational Mathematics, 17, 349-367.
https://doi.org/10.1023/A:1016273820035

分享
Top