基于超声图像纹理特征的RFA治疗无损测温技术研究
Research on Noninvasive Temperature Estimation Technology Based on Texture Features of Ultrasound Images for RFA

作者: 陈 铭 , 赵兴群 :东南大学生物科学与医学工程学院,江苏 南京; 姚林方 :南京大学医学院附属鼓楼医院泌尿外科,江苏 南京;

关键词: 超声无损测温射频消融小波变换灰度梯度共生矩阵Ultrasonic Noninvasive Temperature Estimation Radiofrequency Ablation Wavelet Transform Gray Gradient-Level Co-Occurrence Matrix

摘要: 在肿瘤热疗中,治疗效果与组织区域处的温度监控有直接的关系,超声可以作为热疗中实现组织无损测温的一种重要手段。本文提出了一种基于超声图像纹理分析的应用于肿瘤热疗的无损测温方法,对新鲜离体动物肾脏进行射频消融(Radiofrequency Ablation, RFA)实验并实时记录超声影像及对应温度数据,对消融前后的减影图像进行小波变换并提取处理后图像的灰度梯度共生矩阵中的特征参数与温度进行曲线拟合。结果表明,在射频消融实验中,处理后超声图像的特征参数混合熵与温度具有显著的线性相关性,验证了所提出方法应用于消融过程中温度监控的可行性。

Abstract: In tumor hyperthermia, effect is directly related to temperature monitoring during the therapy. Ultrasound can be used as one of the most important methods for noninvasive temperature meas-urement of tissues in hyperthermia. In this study, a noninvasive temperature estimation method for hyperthermia based on ultrasound image with wavelet transform and texture analysis was pro-posed. Radiofrequency ablation (RFA) was performed on animal kidneys in vitro, and ultrasound images and temperature data were collected in real time. With wavelet transform of subtraction images before and after ablation, texture features such as energy and hybrid entropy extracted from gray-level gradient co-occurrence matrix of the processed ultrasound images were linear fitted with temperature. Results demonstrated that texture features hybrid entropy obtained from im-ages processed with proposed method had high linear correlation with temperature, and verified the feasibility of the proposed approach of temperature monitoring during RFA.

文章引用: 陈 铭 , 赵兴群 , 姚林方 (2021) 基于超声图像纹理特征的RFA治疗无损测温技术研究。 生物医学, 11, 31-39. doi: 10.12677/HJBM.2021.112005

参考文献

[1] Shultz, K., Stang, P., Kerr, A., Pauly, J. and Scott, G. (2011) Rf Field Visualization of Rf Ablation at the Larmor Frequency. IEEE Transactions on Medical Imaging, 31, 938-947.
https://doi.org/10.1109/TMI.2011.2162248

[2] Di Candio, G., Porcelli, F., Campatelli, A., Guadagni, S., Vistoli, F. and Morelli, L. (2019) High-Intensity Focused Ultrasonography and Radiofrequency Ablation of Renal Cell Carcinoma Arisen in Transplanted Kidneys: Single-Center Experience with Long-Term Follow-Up and Review of Literature. Journal of Ultrasound in Medicine, 38, 2507-2513.
https://doi.org/10.1002/jum.14938

[3] Lee, J.W., Choi, M.H., Lee, Y.J., Ali, B., Yoo, H.M., Song, K.Y. and Park, C.H. (2017) Radiofrequency Ablation for Liver Metastases in Patients with Gastric Cancer as an Alternative to Hepatic Resection. BMC Cancer, 17, Article No. 185.
https://doi.org/10.1186/s12885-017-3156-1

[4] Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R. and Riess, H. (2002) The Cellular and Molecular Basis of Hyperthermia. Critical Reviews in Oncology/Hematology, 43, 33-56.
https://doi.org/10.1016/S1040-8428(01)00179-2

[5] Spirou, S.V., Basini, M., Lascialfari, A., Sangregorio, C. and Innocenti, C. (2018) Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice. Nanomaterials, 8, 401.
https://doi.org/10.3390/nano8060401

[6] Roti Roti, J.L. (2008) Cellular Responses to Hyperthermia (40˚C~46˚C): Cell Killing and Molecular Events. International Journal of Hyperthermia, 24, 3-15.
https://doi.org/10.1080/02656730701769841

[7] Subramanian, S., Schmidt, D.T., Rao, M.B. and Mast, T.D. (2016) Dependence of Ultrasound Echo Decorrelation on Local Tissue Temperature during ex Vivo Radiofrequency Ablation. Physics in Medicine & Biology, 61, 2356.
https://doi.org/10.1088/0031-9155/61/6/2356

[8] Kim, Y., Audigier, C., Ziegle, J., Friebe, M. and Boctor, E.M. (2018) Ultrasound Thermal Monitoring with an External Ultrasound Source for Customized Bipolar Rf Ablation Shapes. International Journal of Computer Assisted Radiology and Surgery, 13, 815-826.
https://doi.org/10.1007/s11548-018-1744-4

[9] Hue, Y.K., Guimaraes, A.R., Cohen, O., Nevo, E., Roth, A. and Ackerman, J.L. (2017) Magnetic Resonance Mediated Radiofrequency Ablation. IEEE Transactions on Medical Imaging, 37, 417-427.
https://doi.org/10.1109/TMI.2017.2753739

[10] Bottiglieri, A., Dunne, E., McDermott, B., Cavagnaro, M., Porter, E. and Farina, L. (2020) Monitoring Microwave Thermal Ablation Using Electrical Impedance Tomography: An Experimental Feasibility Study. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, 15-20 March 2020, 1-5.
https://doi.org/10.23919/EuCAP48036.2020.9135226

[11] Guo, G.P., Su, H.D., Ding, H.P. and Ma, Q.Y. (2017) Noninvasive Temperature Monitoring for High Intensity Focused Ultrasound Therapy Based on Electrical Impedance Tomography. Acta Physica Sinica, 66, 164301.
https://doi.org/10.7498/aps.66.164301

[12] Hou, Z., Xu, Z. and Jin, C. (2002) A New Experimental Study on Noninvasive Thermometry in Hifu. Journal-Harbin Institute of Technology, 9, 259-262.

[13] Yang, C., Zhu, H., Wu, S., Bai, Y. and Gao, H. (2010) Correlations between B-Mode Ultrasonic Image Texture Features and Tissue Temperature in Microwave Ablation. Journal of Ultrasound in Medicine, 29, 1787-1799.
https://doi.org/10.7863/jum.2010.29.12.1787

[14] 李勇, 丁亚军, 钱盛友, 段先知, 邹孝. 基于灰度概率分布-交叉熵法的无损测温方法[J]. 电子测量与仪器学报, 2015, 29(2): 247-251.

[15] 郭燕, 丁亚军, 钱盛友, 陈兴. 基于bemd与随机森林算法的hifu治疗无损测温方法[J]. 测试技术学报, 2018, 32(6): 487-492.

[16] 崔梦瑶, 应潇挺, 赵兴群, 姚林方. 肾脏射频消融中超声图像特征参数与温度关系的研究[J]. 中国医学物理学杂志, 2020, 37(9): 1164-1168.

[17] Priyadharsini, R., Sharmila, T.S. and Rajendran, V. (2018) A Wavelet Transform Based Contrast Enhancement Method for Underwater Acoustic Images. Multidimensional Systems and Signal Processing, 29, 1845-1859.
https://doi.org/10.1007/s11045-017-0533-5

[18] Rabie, T., Baziyad, M. and Kamel, I. (2018) Enhanced High Capacity Image Steganography Using Discrete Wavelet Transform and the Laplacian Pyramid. Multimedia Tools and Applications, 77, 23673-23698.
https://doi.org/10.1007/s11042-018-5713-2

[19] De Siqueira, F.R., Schwartz, W.R. and Pedrini, H. (2013) Multi-Scale Gray Level Co-Occurrence Matrices for Texture Description. Neurocomputing, 120, 336-345.
https://doi.org/10.1016/j.neucom.2012.09.042

[20] Gao, S., Peng, Y., Guo, H., Liu, W., Gao, T., Xu, Y. and Tang, X. (2014) Texture Analysis and Classification of Ultrasound Liver Images. Bio-Medical Materials and Engineering, 24, 1209-1216.
https://doi.org/10.3233/BME-130922

分享
Top