﻿ 基于DOE的液力变矩器进出口角对性能的影响分析

# 基于DOE的液力变矩器进出口角对性能的影响分析Analysis of the Influence of the Inlet and Outlet Angles of the Torque Converter on Performance Based on DOE

Abstract: Based on the parametric model of a hydraulic torque converter, the influence of 12 design param-eters on the performance of the hydraulic torque converter was studied, and an approximate model was constructed to replace the original model for performance analysis and multi-objective optimization. 150 groups of data were generated by using the optimized Latin hypercube experi-mental design method, and the performance of each group was calculated by CFD simulation. Sen-sitivity analysis shows that the outlet angle of turbine outer ring has the greatest influence on the maximum efficiency and stall torque coefficient, and the inlet angle of impeller outer ring has the greatest influence on stall torque ratio; meanwhile, there is obvious interaction between the inlet angle and outlet angle of turbine outer ring, which should be considered in parameter adjustment; after optimization, all performances are improved.

1. 引言

2. 实验设计方法

Figure 1. Latin hypercube sampling

Figure 2. Optimized latin hypercube sampling

Table 1. Research range of blade angle

3. 设计参数敏感性分析

$y={a}_{0}+{a}_{1}{x}_{1}+{a}_{2}{x}_{2}+{a}_{3}{x}_{1}^{2}+{a}_{4}{x}_{2}^{2}+{a}_{5}{x}_{1}{x}_{2}$ (1)

${x}_{1},{x}_{2}$ 线性主效应为：

${M}_{{x}_{1}}={a}_{1}d{x}_{1},{M}_{{x}_{2}}={a}_{2}d{x}_{2}$ (2)

Table 2. Sample points based on optimized Latin square hypercube sampling

Table 3. The performance of each sample point

${x}_{1},{x}_{2}$ 二阶主效应为：

${M}_{{x}_{1}^{2}}=2{a}_{3}{x}_{1}d{x}_{1},{M}_{{x}_{2}^{2}}=2{a}_{4}{x}_{2}d{x}_{2}$ (3)

${x}_{1}-{x}_{2}$ 交互效应为： ${M}_{{x}_{1}{x}_{2}}={a}_{5}d{x}_{1}{x}_{2}$，其中

$d\left({x}_{1}{x}_{2}\right)=\left[Max\left({x}_{1}\right)Min\left({x}_{2}\right)+Min\left({x}_{1}\right)Max\left({x}_{2}\right)\right]-\left[Max\left({x}_{1}\right)Max\left({x}_{2}\right)+Min\left({x}_{1}\right)Min\left({x}_{2}\right)\right]$ (4)

${N}_{{x}_{i}}=100\ast {S}_{{x}_{i}}/\underset{j}{\sum }|{S}_{{x}_{i}}|$ (5)

3.1. 最高效率

3.2. 失速变矩比

3.3. 失速泵轮扭矩系数

Figure 3. The pareto chart of ${\eta }_{\mathrm{max}}$

Figure 4. The main effect of ${\eta }_{\mathrm{max}}$

Figure 5. The main effect of Ko

Figure 6. The pareto chart of Ko

Figure 7. Interaction effect between ${\beta }_{P{O}_{-}}O$ and ${\beta }_{P{O}_{-}}I$

Figure 8. Interaction effect between ${\beta }_{T{O}_{-}}O$ and ${\beta }_{T{O}_{-}}I$

Figure 9. The pare to chart of ${\lambda }_{B0}$

4. 基于RSM方法的近似模型的搭建及优化设计

$y\left(x\right)=\stackrel{¯}{y}\left(x\right)+\delta$ (6)

$\stackrel{¯}{y}={a}_{0}+\underset{i=1}{\overset{m}{\sum }}{b}_{i}{x}_{i}+\underset{i=1}{\overset{m}{\sum }}{b}_{i}^{2}{x}_{i}^{2}+\underset{i=1}{\overset{m}{\sum }}{b}_{i}^{3}{x}_{i}^{3}+\underset{i\ne j}{\sum }{x}_{i}{x}_{j}$ (7)

Table 4. Fitting error analysis

Table 5. Optimized parameter value

Table 6. The result of performance optimization

5. 结论

(1) 在三维流场设计仿真的基础上，运用优化拉丁超立方试验设计方法，对液力变矩器样本点进行选取，研究了液力变矩器内外环进出口角对性能的影响，运用RSM方法构建近似模型并通过NSGA-II多目标遗传算法对设计参数进行了寻优，得到一组样本点使各项性能指标均有提升。

(2) 由性能影响分析结果可知，涡轮叶片外环出口角、泵轮叶片外环进口角对液力变矩器各项性能指标均有较大影响，在分析优化失速变矩比时，应考虑到涡轮外环进口角和出口角之间的交互效应。

(3) 优化后失速泵轮扭矩系数增大了约28%，失速变矩比增大了约2.8%，最大效率增加约1%，结果表明，该方法优化效果良好，精度符合要求，为液力变矩器设计优化提供理论指导。

[1] 朱文杰. 轿车液力变矩器的扁平化设计及其性能优化[D]: [硕士学位论文]. 上海: 同济大学, 2015.

[2] 韩克非, 吴光强, 王欢. 基于CFD的泵轮叶栅关键参数对液力变矩器的性能影响预测[J]. 汽车工程, 2010, 32(6): 497-500+465.

[3] 吴光强, 陈曙光, 王欢. 液力变矩器叶栅角度参数优化及算法[J]. 同济大学学报(自然科学版), 2009, 37(6): 810-813.

[4] Wu, G.-Q., Chen, J. and Zhu, W.J. (2018) Performance Analysis and Improvement of Flat Torque Converters Using DOE Method. Chinese Journal of Mechanical Engineering, 31, Article No. 60.
https://doi.org/10.1186/s10033-018-0262-1

[5] 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005.

[6] Kuhnt, S. and Steinberg, D.M. (2010) Design and Analysis of Computer Experiments. AStA Advances in Statistical Analysis, 94, 307-309.
https://doi.org/10.1007/s10182-010-0143-0

[7] Viana, F.A.C., Venter, G. and Balabanov, V. (2010) An Algorithm for Fast Optimal Latin Hypercube Design of Experiments. International Journal for Numerical Methods in Engineering, 82, 135-156.
https://doi.org/10.1002/nme.2750

[8] 刘城, 潘鑫, 闫清东. 基于DOE及RSM的液力变矩器叶片数对性能的影响及优化[J]. 北京理工大学学报, 2012, 32(7): 689-693.

[9] 赖宇阳. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012.

Top