基于小生境粒子群算法的Pareto多目标配电网重构
Pareto Multi-Objective Distribution Network Reconfiguration Based on Improved Niche Particle Swarm Optimization Algorithm

作者: 孙红丽 , 张振刚 :邯郸供电公司,邯郸;

关键词: 配电网重构Pareto粒子群算法小生境<br>Distribution Network Reconfiguration Pareto PSO Niche

摘要: 配电网重构可以提高配电网运行的安全性、经济性和供电质量,对于当前国内配电自动化系统建设和应用具有重要意义。笔者在《电力系统保护与控制》第5期通过“基于改进小生境遗传算法的Pareto多目标配电网重构”中所运用的方法进行了优化尝试,达到了优化的效果。但为了从不同方法实现优化效果,该文又提出一种基于小生境技术的多目标配电网最优重构的粒子群算法,引入Pareto最优的概念,实现了真正意义上的多目标优化;用粒子群算法实现对多目标重构问题的Pareto最优解集的搜索,采用小生境技术和变异操作保持种群的多样性和分散性,改善了粒子群算法的全局收敛可靠性和收敛速度。理论分析和算例结果表明:基于小生境粒子群算法的配电网重构在速度上和精度上能满足要求,并且较单目标优化更具工程实际意义。

Abstract: Distribution network reconfiguration can improve the operation security, economy and power qua- lity of distribution network, for the current national construction and application of distribution automation system it has great significance. This paper presents a multi-objective distribution network optimal reconfi- guration of the particle swarm algorithm which based on a niche technology, the introduction of the concept of Pareto optimal to achieve a true sense of the multi-objective optimization; apply the particle swarm algori- thm to achieve the search of the Pareto optimal solution set of multi-objective reconfiguration, using niche technology and mutation operators to maintain the population diversity and dispersion, improved particle swarm algorithm global convergence reliability and convergence speed. Theoretical analysis and numerical results show that: distribution network reconfiguration based on niche particle swarm optimization meet the requirements in the speed and accuracy, and have more practical significance than the single-objective op- timization.

文章引用: 孙红丽 , 张振刚 (2011) 基于小生境粒子群算法的Pareto多目标配电网重构。 智能电网, 1, 68-72. doi: 10.12677/sg.2011.13014

参考文献

[1] Y.-Y. Hsu, J.-H. Yi, S. S. Liu, et al. Transformer and feeder load balancing using a heuristic search approach. IEEE Trans on Power Systems, 1993, 8(1): Article ID 1842190.

[2] J.-H. Yi. The refined strategy for substation main transformer and feeder load balancing. Electric Power & Energy System, 1997, 19(2): Article ID 87291.

[3] M. A. Kashem, G. B. Jasmon and V. Ganapathy. A new approach of distribution system reconfiguration for loss minimization. Elec- tric Power & Energy System, 2000, 22: Article ID 2692276.

[4] 杜卫红, 孙雅明, 刘宏靖等. 基于遗传算法的配电网故障定位和隔离[J]. 电网技术, 2000, 24(5): 52-55.

[5] 卫志农, 何桦, 邓玉平. 配电网故障区间定位的高级遗传算法[J]. 中国电机工程学报, 2002, 22(4): 127-130.

[6] Y. Y. Hsu, H. C. Kuo. A heuristic based fuzzy restoration approa- ch for distribution system service restoration. IEEE Trans on Po- wer Delivery, 1994, 9(2): 948-953.

[7] 邓佑满, 张伯明, 相年德. 配电网络重构的改进最优流模式算法[J]. 电网技术, 1995, 19(7): 47-50.

[8] 胡敏羑, 陈元. 配电系统最优网络重构的模拟退火算法[J]. 电力系统自动化, 1994, 18(2): 24-28.

[9] 陈月婷, 何芳. 基于改进粒子群算法的立体仓库货位分配优化[J]. 计算机工作与应用, 2008, 44(11): 229-231..

[10] 刘健, 毕鹏翔, 董海鹏. 复杂配电网简化分析与优化[M]. 北京: 中国电力出版社, 2002: 68-244.

[11] A. Ahuja, S. Das and A. Pahwa. An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration. IEEE Tran- sactions on Power Systems, 2007, 22(3): 1101-1111.

[12] 雷健生, 邓佑满, 张伯明. 综合潮流模式及其在配电系统网络重构中的应用[J]. 中国电机工程学报, 2001, 21(1): 57-62.

[13] 梁有伟, 胡志坚, 陈允平. 分布式发电及其在电力系统中的应用研究综述[J]. 电网技术, 2003, 27(12): 71-76.

分享
Top