应力敏感性油藏油水两相渗流数值模拟
Numerical Simulation of Oil and Water Tow-Phase See-page in Stress Sensitivity Reservoirs

作者: 沈瑞 * , 胡志明 , 熊伟 , 高树生 , 薛惠 :;

关键词: 应力敏感性数值模拟渗流数学模型无因次渗透率Stress Sensitivity Numerical Simulation Mathematical Model of Seepage Dimensionless Permeability

摘要:
本文给出了应力敏感性介质油水两相渗流的数学模型,并采用有限差分方法进行求解。计算过程中,每个时间步的渗透率根据实验测得的无因次渗透率与有效应力关系曲线求得,根据新的渗透率分布求解下一时间步的压力分布。通过数值模拟方法分别研究了不存在应力敏感性、以及三种不同敏感程度的算例,并给出无因次渗透率的空间分布图、日产油量以及平均地层压力的对比曲线图。结果表明:应力敏感性越强,平均地层压力的变化范围越小,无水采油期内的日产油量越低;应力敏感性越弱,平均地层压力的变化范围越大,无水采油期内的日产油量越高。在生产井和注水井附近,渗透率分布变化较为急剧,远离井的区域变化较为平缓。
The mathematical model of oil and water two-phase seepage was derived and solved by numerical limited difference method in the paper. During the simulation, permeability values of every time step were calculated by relation curves between dimensionless permeability and effective stress obtained by experiment. Then the pressure distribution of next time step was calculated by the new permeability distribution. The situation of non-stress sensitivity and three different kinds of sensitive degree are studied respectively through numerical stimulation method. Figures of the dimensionless permeability space distribution, the daily oil production and the average reservoir pressure were drawn. Results show the stronger the stress sensitivity is, the variation range of the average reservoir pressure is small and the daily oil production is lower during the water free oil production period. While the weaker the stress sensitivity is, the variation range of the average reservoir pressure is large and the daily oil production is higher during the water free oil production period. Permeability distribution changes sharply around production and injection wells, while smoothly far from wells.

文章引用: 沈瑞 , 胡志明 , 熊伟 , 高树生 , 薛惠 (2011) 应力敏感性油藏油水两相渗流数值模拟。 渗流力学进展, 1, 21-24. doi: 10.12677/apf.2011.12004

参考文献

[1] R. A. Farquhar, B. G. D. Smart, A. C. Todd, et al. Stress sensi-tivity of low-permeability sandstones from the Rotliegendes san- dstone. SPE Annual Technical Conference and Exhibition, Houston, 3-6 October 1993: 851-861.

[2] Y. T. Duan, Y. F. Meng, P. Y. Luo, et al. Stress sensitivity of na- turally fractured-porous reservoir with dual-porosity. SPE Inter-national Oil and Gas Conference and Exhibition in China, Bei-jing, 2-6 November 1998: 295-302.

[3] 阮敏. 压敏效应对低渗透油田开发的影响[J]. 西安石油学院学报, 2001, 16(4): 40-45.

[4] 于忠良, 熊伟, 高树生. 致密储层应力敏感性及其对油田开发的影响[J]. 石油学报, 2007, 28(4) : 95-98.

[5] 程林松, 贺立湘, 李春兰等. 含天然裂缝变形介质油藏数值模拟方法[J]. 石油大学学报(自然科学版), 2001, 25(5): 50-52.

[6] 杨蕾, 同登科, 林红. 变形双重介质油藏井筒耦合模型及数值模拟研究[J]. 石油天然气学报, 2008, 30(6): 103-106.

[7] 袁士义, 冉启全, 胡永乐等. 考虑裂缝变形的低渗透双重介质油藏数值模拟研究[J]. 自然科学进展, 2005, 15(1): 77-83.

[8] 王新海, 张冬丽, 席长丰. 变形介质底层低渗非达西渗流的油藏数值模拟[J]. 江汉石油学院学报, 2004, 26(3): 13-15.

[9] 李转红, 任晓娟, 张宁生等. 特低渗储层应力敏感性及对油井产量的影响[J]. 西安石油大学学报(自然科学版), 2005, 20(4): 60-63.

[10] 罗瑞兰, 程林松, 彭建春. 油气储层渗透率应力敏感性与启动压力梯度的关系[J]. 西南石油学院学报, 2005, 27(3): 20-22.

[11] 阮敏, 王连刚. 低渗透油田开发与压敏效应[J]. 石油学报, 2002, 23(3): 73-76.

[12] 李闽, 乔国安, 陈昊. 低渗砂岩储层岩石应力敏感实验与理论研究[J]. 钻采工艺, 2006, 29(4): 91-93.

[13] 王新海, 郭立波, 谢又新等. 数值模拟法研究压力敏感地层井底压力响应特征[J]. 石油天然气学报, 2006, 28(5): 96-97.

[14] 冯其红, 陈朝辉, 李春芹. 特低渗透压敏油藏产量递减规律数值模拟[J]. 大庆石油地质与开发, 2008, 27(4): 45-49.

[15] 张先敏, 同登科. 变形介质分形气藏气–水两相流动分析[J]. 石油天然气学报, 2008, 30(6): 107-110.

[16] T. 厄特金, J. H. 阿布–卡森, G. R. 金. 实用油藏模拟技术 [M]. 北京: 石油工业出版社, 2004: 113-114.

[17] 张烈辉. 油气藏数值模拟基本原理[M]. 北京: 石油工业出版社, 2005: 34-35.

分享
Top