基于ROF模型的修正半光滑牛顿法
The Modified Semismooth Newton Algorithm Based on the ROF Model

作者: 庞志峰 :河南大学数学与信息科学学院,开封; 吕军成 :郑州工业贸易学校,郑州;

关键词: 图像去噪全变差半光滑牛顿法: Image Denoising Total Variation Semismooth Newton Algorithm

摘要: 本文基于ROF去噪模型的对偶算法提出一个修正的半光滑牛顿法。文中证明了该算法具有Q超线性收敛,同时指出选取适当的参数α可以提高数值计算效率。实验表明,建议的修正算法既能较好的复原图像,又具有较快的收敛速度。

Abstract: In this paper, based on the dual algorithm of ROF model, we propose a modified semismooth Newton algorithm. Furthermore, we prove that the proposed algorithm converges Q-superlinearly, and also refer that this algorithm can improve the computational efficiency by choosing a suitable parameter α. The simulations show that the new modified algorithm can perfectly restore image and keep the faster conver-gence rate.

文章引用: 庞志峰 , 吕军成 (2011) 基于ROF模型的修正半光滑牛顿法。 理论数学, 1, 26-29. doi: 10.12677/pm.2011.11006

参考文献

[1] L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 1992, (60): 259-268.

[2] C. Vogel, E. Oman. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 1996, 17(1): 227- 238.

[3] T. Goldstein, S. Osher. The split Bregman for L1 regularization regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.

[4] J. Darbon, M. Sigelle. Image restoration with discrete constrained total variation Part 1: Fast and exact optimization. Journal of Mathematical Imaging and Vision, 2006, 26(3): 261-276.

[5] D. Goldfarb, W. Yin. Second-order cone programming methods for total variation based image restoration. SIAM Journal on Scientific Computing, 2005, 27(2): 622-645.

[6] A. Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97.

[7] M. Ng, L. Qi, Y. Yang, et al. On semismooth Newton’s methods for total variation minimization. J. Math. Image Vision, 2007, 27(3): 265-276.

[8] G. Yu, L. Qi, Y. Dai. On nonmonotone Chambolle gradient projection algorithms for total variation image restoration. Journal of Mathematical Imaging and Vision, 2009, 35(2): 143-154.

[9] L. Qi. Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research, 1993, 18(1): 227-244.

[10] H. Jiang, D. Ralph. Global and local superlinear con-vergence analysis of Newton-type methods for semismooth equations with smooth least squares, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi (eds.), Kluwer Acad. Publ., Dordrecht, 1998:181-209.

分享
Top