﻿ 研究生专业课程《微分方程数值解法》的教学方法的探索与实践：以南昌航空大学为例

# 研究生专业课程《微分方程数值解法》的教学方法的探索与实践：以南昌航空大学为例Exploration and Practice of the Teaching Methods of the Professional Course Numerical Methods for Differential Equations for Graduate Student: A Case Study of Nanchang Hangkong University

Abstract: According to the circumstances of the graduate students which come from Nanchang Hangkong University and major in computational mathematics, the training objectives for graduate students, and the characteristics of the “Numerical Methods for Partial Differential Equations”, this study focuses on the good explorations and conclusions for the teaching of this course, and proposes the principle of the teaching combining with the research. Promoting teaching aims at the culture and improvement of the scientific research level for graduate students, such as, finding scientific problems, devising and optimizing algorithms, programming, data processing and the analyses of mathematical theories. Teaching practice shows that the principle and methods proposed in this study are good for the improvement of the abilities to innovative research for graduate students.

1. 引言

2. 教学原则和方法的探究

1) 教学理念服务教学目标

2) 精选教材，优化课堂教学内容

3) 充分运用传统教学方法和现代教育技术手段，提高教学效果

4) 重视数值实验，提高研究生的科学计算和数据处理能力

3. 学生培养成效及总结

《微分方程数值解法》课程是计算数学专业微分方程数值解方向研究生的专业课程。

[1] 李郴良. 《偏微分方程数值解》课程的探究式教学方法初探[J]. 教育现代化, 2018, 5(1): 237-238.

[2] 曹富军, 刘鹤. 教学、科研与实践有效结合的偏微分方程数值解课程教学[J]. 高师理科学刊, 2014, 34(6): 84-87.

[3] 黄鹏展. 教学与科研相结合原则在偏微分方程数值解教学中的实践[J]. 数学教育学报, 2015, 24(4): 48-50.

[4] 邹永魁. 偏微分方程数值解课程的思索[J]. 科技信息, 2012(9): 200-201.

[5] 李荣华, 刘播. 微分方程数值解法[M]. 北京: 高等教育出版社, 2009.

[6] 余德浩, 汤华中. 微分方程数值解法[M]. 北京: 科学出版社, 2003.

[7] Hairer, E., et al. (2006) Solving Differential Equations I-II. 科学出版社, 北京.

[8] Thomas, J.W. (1999) Numerical Partial Dif-ferential Equations. Springer, New York.
https://doi.org/10.1007/978-1-4612-0569-2

[9] Deng, D.W., Xie, J.Q., Jiang, Y.L. and Liang, D. (2019) A Sec-ond-Order Box Solver for Nonlinear Delayed Convection-Diffusion Equations with Neumann Boundary Conditions. In-ternational Journal of Computer Mathematics, 96, 1879-1898.
https://doi.org/10.1080/00207160.2018.1542133

[10] Deng, D.W. and Wang, Z.A. (2020) Numerical Studies of High-Dimensional Nonlinear Viscous and Nonviscous Wave Equations by Using Finite Difference Methods. Interna-tional Journal of Modeling, Simulation, and Scientific Computing, 11, 2050008.
https://doi.org/10.1142/S1793962320500087

[11] Deng, D.W. and Wu, Q. (2020) Analysis of a Compact Mul-ti-Step ADI Method for Linear Parabolic Equation. International Journal of Modelling and Simulation, 40, 1-16.
https://doi.org/10.1080/02286203.2018.1510206

Top