﻿ 低温等离子体去除氯苯的研究

# 低温等离子体去除氯苯的研究Study on Chlorobenzene Removal by Low-Temperature Plasma

Abstract: In this paper, chlorobenzene was treated by low-temperature plasma with chlorobenzene as the target pollutant. The electrical characteristics of the discharge process, the influence of different gas volume on the removal of chlorobenzene by low temperature plasma, the production of CO2 and the production of by-products (O3 and NOx) were investigated. The results show that the applied voltage fluctuates periodically from −17,500 V to 7500 V, and the peak to valley value of discharge current is in the range of −0.3 A~−0.2 A. The discharge power and the removal efficiency of chlorobenzene increased gradually with the prolongation of discharge time until stable. The discharge power was stable at about 6.8 W, and the chlorobenzene removal rate was stable at about 72%. The concentration of CO2 generated by the reaction increased with the discharge time and tended to be stable at 1170 ppm. The degradation efficiency of chlorobenzene decreased with the increase of gas volume. When the gas volume increased from 500 mL/min to 1500 mL/min, the degradation efficiency of chlorobenzene decreased from 74.43% to 51.92% when the peak voltage was stable at 27 kV.

1. 引言

2. 实验

$\eta =\frac{{C}_{0}-{C}_{1}}{{C}_{0}}×100%$ (1)

CO2生成率通过式(2)计算得到：

$P=\frac{{C}_{2}-{C}_{3}}{6{C}_{0}}×100%$ (2)

Figure 1. Flow chart of experimental system (1-power supply; 2-oscilloscope; 3-reactor; 4-air; 5-flowmeter; 6-thermmostatwaterbath; 7-gas chromatograph; 8-H2; 9-N2)

3. 结果与讨论

3.1. 放电波形图

Figure 2. Waveform of voltage and current during discharge

Figure 3. Waveform of discharge power during discharge

Figure 4. Variation of discharge power with discharge time

3.2. 伏安特性曲线

Figure 5. Variation of peak to peak current with peak to peak voltage

3.3. 氯苯去除效果及CO2的产生情况

Figure 6. Variation of chlorobenzene concentration and CO2 concentration with discharge time

Figure 7. Change of removal efficiency of chlorobenzene with discharge time

Figure 8. Change of chlorobenzene removal rate and CO2 generation rate with discharge power

Figure 9. Concentration of by-products in tail gas

3.4. 模拟废气气量对氯苯去除效率的影响

Figure 10. Effect of gas volume on chlorobenzene removal efficiency

4. 结论

[1] 李国文, 樊青娟, 刘强, 苏媚, 马广大. 挥发性有机废气(VOCs)的污染控制技术[J]. 西安建筑科技大学学报(自然科学版), 1998(4): 95-98.

[2] 谢绍东, 于淼, 姜明. 有机气溶胶的来源与形成研究现状[J]. 环境科学学报, 2006(12): 1933-1939.

[3] 方宁杰. VOCs控制技术研究进展和发展趋势[J]. 四川化工, 2016, 19(6): 47-50.

[4] 成通宝. 国内外VOC研究现状[C]//中国建筑学会暖通空调专业委员会、中国制冷学会第五专业委员会. 全国暖通空调制冷2000年学术年会论文集. 北京: 中国建筑工业出版社, 2000: 4.

[5] 王爱华. 等离子体协同催化技术处理挥发性有机物的研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2015.

[6] 周勇平, 高翔, 吴祖良, 骆仲泱, 魏恩宗, 倪明江, 岑可法. 直流电晕自由基簇射治理甲苯的试验研究[J]. 环境科学, 2003(4): 136-139.

[7] Chang, M.B. and Lee, C.C. (1995) Destruction of Formaldehyde with Dielectric Barrier Discharge Plasmas. Environmental Science & Technology, 29, 181-186.
https://doi.org/10.1021/es00001a023

[8] Yamamoto, T., Ramanathan, K. and Lawless, P.A. (1992) Control of Volatile Organic Compounds by an AC Energized Ferroelectrics Pellet Reactor and a Pulsed Corona Peactor. IEEE Transactions on Industry Applications, 28, 528-534.
https://doi.org/10.1109/28.137430

[9] Nifuku, M., Horvath, M., Bodnar, J., et al. (1997) A Study on the Decom-position of Volatile Organic Compounds by Pulse Corona. Journal of Electrostatics, 40, 687-692.
https://doi.org/10.1016/S0304-3886(97)00116-2

[10] 李锻, 刘明辉, 吴彦, 等. 单极性脉冲电源结合介质阻挡放电降解VOCs[J]. 北京理工大学学报, 2005, 25(S1): 201-204.

[11] 李坚, 马广大. 电晕法处理VOCs的机理分析与实验[J]. 西安建筑科技大学学报(自然科学版), 2000, 32(1): 24-27.

[12] 李胜利, 汪晓熙, 吴健婷, 等. 放电等离子体方法处理二甲苯废气的实验研究[J]. 环境科学与技术, 2006, 29(2): 1-2.

[13] 李坚, 马广大. 电晕法处理易挥发性有机物(VOCs)的实验研究[J]. 环境工程, 1999, 17(3): 30-32.

[14] Masuda, S., Hosokawa, S., Tu, X., et al. (1995) Novel Plasma Chemical Technologies PPCP and SPCP for Control of Gaseous Pollutants and Air Toxics. Journal of Electrostatics, 34, 415-438.
https://doi.org/10.1016/0304-3886(94)00027-T

[15] Yamamoto, T. (1997) VOC Decomposition by Nonthermal Plasma Processing—A New Approach. Journal of Electrostatics, 42, 227-238.
https://doi.org/10.1016/S0304-3886(97)00144-7

[16] Ogata, A., Ito, D., Mizuno, K., et al. (2002) Effect of Co-existing Components on Aromatic Decomposition in a Packed-Bed Plasma Reactor. Applied Catalysis A: General, 236, 9-15.
https://doi.org/10.1016/S0926-860X(02)00280-6

Top