﻿ Ka频段超宽带双圆极化低剖面相控阵天线

# Ka频段超宽带双圆极化低剖面相控阵天线Ka-Band UWB Dual Circularly Polarized Phased Array Antenna with Low Profile

Abstract: With the rise of LEO Satellite Constellation in recent years, phased array antenna has attracted much attention. In this paper, a Ka-band phased array antenna is designed. The array element uses the form of micro-strip antenna. The antenna has the characteristics of ultra-wideband, dual circular polarization, low-profile and high radiation efficiency. Compared with the traditional ul-tra-wideband array element which mostly uses the dipole antenna, the micro-strip antenna is used in this design. It has the advantages of simple processing, easy integration of low profile. According to the test, the bandwidth with the VSWR less than 2 is 46% and the bandwidth with radiation efficiency greater than 85% is 43%. So, this work has innovation and meaning for engineering practice.

3. 单元天线的设计

$W=\frac{c}{2f}{\left(\frac{{\epsilon }_{r}+1}{2}\right)}^{-\frac{1}{2}},\text{\hspace{0.17em}}L=\frac{c}{2f\sqrt{{\epsilon }_{e}}}-2\Delta l$ (1)

${\epsilon }_{e}=\frac{{\epsilon }_{r}+1}{2}+\frac{{\epsilon }_{r}-1}{2}{\left(1+\frac{12h}{W}\right)}^{-\frac{1}{2}},\text{\hspace{0.17em}}\frac{\Delta l}{h}=0.412\frac{\left({\epsilon }_{e}+0.3\right)\left(W/h+0.264\right)}{\left({\epsilon }_{e}-0.258\right)\left(W/h+0.8\right)}$ (2)

Figure 5. The radiation principle of micro-strip antenna

Figure 6. The graph of micro-strip antenna model

Figure 7. The VSWR of antenna

Figure 8. The AR of antenna

Figure 9. The real gain of antenna

Figure 10. The picture of antenna

Figure 11. The VSWR measurement result of the antenna

Figure 12. The AR measurement result of the antenna

Figure 13. The gain and efficiency measurement results

Table 3. The test results of the antenna element

4. 阵列天线的设计

LEO卫星相比GEO卫星的飞行速度更快数量更多，所以地面终端应具备对卫星快速跟踪、波束切换及波形调整等功能，相控阵天线相比传统机械扫描天线具有极大的优势。相控阵天线通过改变天线单元连接的TR组件射频通道中移相器的相位来实现阵列波束的扫描，一般采用矩形栅格布阵、三角形栅格布阵或同心圆环栅格布阵等 [14] [15] [16] [17]。在本次设计中为了简化设计和后期组装采用了矩形栅格布阵。设有一如图14所示的MxN排布的矩形平面阵，阵面所在平面为OXY面，行间距为dx列间距为dy且dx = dy

Figure 14. The graph of rectangular array antenna

$F\left(\theta ,\phi \right)=\underset{m=1}{\overset{M}{\sum }}\underset{n=1}{\overset{N}{\sum }}{\stackrel{˙}{I}}_{mn}{e}^{jk\left(m{d}_{x}\mathrm{cos}\phi +n{d}_{y}\mathrm{sin}\phi \right)\mathrm{sin}\theta }$ (3)

$F\left(\theta ,\phi \right)={F}_{x}\left(\theta ,\phi \right)\cdot {F}_{y}\left(\theta ,\phi \right)$ (4)

$F\left(\theta ,\phi \right)=\left\{\begin{array}{l}{F}_{x}\left(\theta ,\phi \right)=\underset{m=1}{\overset{M}{\sum }}{I}_{xm}{\text{e}}^{jm\left(k{d}_{x}\mathrm{cos}\phi \mathrm{sin}\theta -{\alpha }_{x}\right)}\\ {F}_{y}\left(\theta ,\phi \right)=\underset{n=1}{\overset{N}{\sum }}{I}_{ym}{\text{e}}^{jn\left(k{d}_{y}\mathrm{sin}\phi \mathrm{sin}\theta -{\alpha }_{y}\right)}\end{array}$ (5)

$\left\{\begin{array}{c}{\alpha }_{x}=k{d}_{x}\mathrm{cos}{\phi }_{0}\mathrm{sin}{\theta }_{0}\\ {\alpha }_{y}=k{d}_{y}\mathrm{sin}{\phi }_{0}\mathrm{sin}{\theta }_{0}\end{array}$ (6)

${d}_{x},{d}_{y}<\frac{\lambda }{1+\mathrm{sin}{\theta }_{\mathrm{max}}}$ (7)

Figure 15. The picture of array antenna

Figure 16. The gain and AR measurement results. (a) The scan angle at 0˚; (b) The scan angle at 10˚; (c) The scan angle at 20˚; (d) The scan angle at 30˚; (e) The scan angle at 40˚

Table 4. The results of the gain and AR of the antenna array

5. 结论

[1] William A. Imbriale, Steven Gao, Luigi Boccia. 空间天线手册[M]. 胡明春, 王建明, 金林, 等, 译. 北京: 电子工业出版社, 2018.

[2] 周志鹏. 毫米波有源相控阵天线技术[J]. 微波学报, 2018, 34(1): 1-5.

[3] 肖昌怡, 张波, 刘港, 王延. 高集成度有源相控阵天线[J]. 微波学报, 2018, 34(4): 1-5.

[4] 严冬, 杜培勋, 王平, 陈俊宇, 董腾. 2.4 GHz宽带圆极化微带天线的研究与实现[J]. 电波科学学报, 2019, 34(3): 380-389.

[5] 褚庆昕, 罗宇, 郑东泽, 吴锐. 基于多模滤波器概念的宽带天线设计[J]. 电波科学学报, 2018, 33(4): 373-379.

[6] 蔺炜, 黄衡. 宽带极化与方向图可重构天线研究[J]. 电波科学学报, 2018, 33(3): 293-300.

[7] 陈常青, 周志鹏, 张金平. 一种基于紧耦合结构的超宽带天线阵列设计[J]. 现代雷达, 2018, 40(2): 73-76.

[8] 戴宗昆, 周永刚, 王佳友. 基于紧耦合结构的宽带基站天线设计[J]. 微波学报, 2019, 35(3): 20-23.

[9] 陈志宁, 刘炜, 李腾, 林丰涵, 江梅. 惠更斯电磁超构表面微波天线的研究进展(特邀文章) [J]. 电波科学学报, 2018, 33(3): 239-255.

[10] Chen, Z.N., Liu, W. and Qing, X. (2017) Low-Profile Broadband Mushroom and Metasurface Antennas. International Workshop on Antenna Technology, Athens, 1-3 March 2017, 13-16.
https://doi.org/10.1109/IWAT.2017.7915284

[11] David M. Pozar. 微波工程[M]. 第3版. 张肇仪, 周乐柱, 吴德明, 等, 译. 北京: 电子工业出版社, 2011.

[12] 钟顺时. 微带天线理论与应用[M]. 西安: 西安电子科技大学出版社, 1991.

[13] 魏文元, 宫德明, 陈必森. 天线原理[M]. 西安: 西安电子科技大学, 1985: 50-55.

[14] 张光义. 相控阵雷达原理[M]. 北京: 国防工业出版社, 2009.

[15] 束咸荣, 何炳发, 高铁. 相控阵雷达天线[M]. 北京: 国防工业出版社, 2007.

[16] 王建, 郑一农, 何子远. 阵列天线理论与工程应用[M]. 北京: 电子工业出版社出版社, 2017.

[17] Zhang, W.J., Zhao, Y.M. and Zhang, M. (2012) The Synthesis of a Longitudinal Slot Array on a Rectangular Waveguide. 2012 10th International Symposium on Antennas, Propagation & EM Theory, Xian, 22-26 October 2012, 202-205.
https://doi.org/10.1109/ISAPE.2012.6408744

Top