真核生物内含子研究进展
Research Progress in Eukaryotic Intron

作者: 曹军 :;

关键词: 内含子进化内含子获得与丢失Intron Evolution Intron Acquisition and Lose

摘要: 内含子是成熟RNA转录本中被剪切掉的基因组序列。一些真核基因组测序的完成有助于了解内含子进化问题,如真核基因外显子/内含子的结构等等。本文就内含子分布、内含子产生假说、拼接体及主要拼接位点、内含子获得和丢失及其机制、影响因素等方面做简要综述

Abstract: Intron is the genome sequence that is cut out in mature RNA transcripts. Full sequencing of a number of eukaryotic genome gives us some help to understand the intron evolution, exon-intron organization etc. This paper reviewed some progress in intron distrubtion, intron generated hypothesis, spliceosome and major splice sites, intron acquisition and lose and its mechanisms, factors affecting the evolution of intron, and so on.

文章引用: 曹军 (2011) 真核生物内含子研究进展。 生物过程, 1, 9-12. doi: 10.12677/bp.2011.12003

参考文献

[1] T. Mourier, D. C. Jeffares. Eukaryotic intron loss. Science, 2003, 300: 1393.

[2] W. Gilbert. The exon theory of genes. Cold Spring Harbor Sym- posia Quantitative Biology, 1987, 52: 901-905.

[3] G. Cho, R. F. Doolittle. Intron distribution in ancient paralogs sup-ports random insertion and not random loss. Journal of Molecular Evolution, 1997, 44(6): 573-584.

[4] M. Rosbash, B. Séraphin. Who’s on first? The U1 snRNP-59 splice site interaction and splicing. Trends in Biochemical Sciences, 1991, 16: 187-190.

[5] T. Sadusky, A. J. Newman and N. J. Dibb. Exon junction sequences as cryptic splice sites: Implications for intron origin. Current Biology, 2004, 14(6): 505-509.

[6] S. Vanacova, W. Yan, J. M. Carlton, et al. Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. P The Proceedings of the National Academy of Sciences USA, 2005, 102: 4430-4435.

[7] A. V. Sverdlov, I. B. Rogozin, V. N. Babenko, et al. Conservation versus parallel gains in intron evolution. Nucleic Acids Research, 2005, 33(6): 1741-1748.

[8] S. W. Roy, A. Fedorov and W. Gilbert. Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. The Proceedings of the National Academy of Sciences USA, 2003, 100(12): 7158-7162.

[9] V. N. Babenko, I. B. Rogozin, S. L. Mekhedov, et al. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Research, 2004, 32(12): 3724-3733.

[10] L. Carmel, I. B. Rogozin, Y. I. Wolf, et al. Evolutionarily conserved genes preferentially accumulate introns. Genome Research, 2007, 17: 1045-1050.

[11] S. W. Roy, et al. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nature Reviews Genetics, 2006, 7: 211-221.

[12] D. Brett, H. Pospisi, J. Valcárcel, et al. Alternative splicing and genome complexity. Nature Genetics, 2002, 30(1): 29-30.

[13] J. M. Comeron, M. Kreitman. The correlation between intron length and recombination in Drosophila. Dynamic equilibrium between mutational and selective forces. Genetics, 2000, 156(3): 1175-1190.

[14] L. Carmel, Y. I. Wolf, I. B. Rogozin, et al. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Research, 2007, 17: 1034-1044.

[15] B. R. Graveley. Alternative splicing: Increasing diversity in the proteomic world. Trends Genet, 2001, 17(2): 100-107.

[16] E. S. Maxwell, M. J. Fournier. The small nucleolar RNAs. Annual Review of Biochemistry, 1995, 64: 897-934.

[17] K. M. Neugebauer. On the importance of being co-transcriptional. Journal of Cell Science, 2002, 115: 3865-3871.

[18] E. van Wijk, R. J. Pennings, H. te Brinke, et al. Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that en-code multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. The American Journal of Human Genetics, 2004, 74(4): 738-744.

[19] B. Venkatesh, Y. Ning and S. Brenner. Late changes in spliceo- somal introns define clades in vertebrate evolution. The Proceedings of the National Academy of Sciences USA, 1999, 96(18): 10267-10271.

[20] A. B. Rose. Intron-mediated regulation of gene expression. Current Topics in Microbiology and Immunology, 2008, 326: 277-290.

分享
Top