﻿ 气候变化对水文水资源影响评价的不确定研究进展

# 气候变化对水文水资源影响评价的不确定研究进展Review for Impact Assessment of Climate Change on Hydrology and Water Resources in Uncertainties Research

Abstract: This paper summarized the research progress and application fields on hydrology and water resources on the uncertainty of climate change. It was mainly due to the limited understanding of human beings about the hydrology and water resources uncertainties under climate change. Although scholars and experts attributed many factors to human activities, they ignored the uncertainties of the system itself. The paper summarized the common uncertainty assessment methods and estimated the uncertainty of future climate change to study and forecast the hydrology uncertainty more accurately. At the same time, the paper came up with clear research direction and guidance recommendations. It is significant to seek change adaptation countermeasures and promote sustainable use of water resources in the context of global climate change.

1. 引言

2. 气候变化对水文水资源研究进展

2.1. 不确定性研究进展

Table 1. The major resources, extent and nature of the uncertainty of the water resources under climate change

2.2. 不确定性应用领域

Figure 1. Application of uncertain systems in hydrology

3. 气候变化对流域水文过程影响评价的不确定性

3.1. 不确定性来源

Figure 2. Sources of uncertainties in catchment hydrological processes under changing climate

3.2. 不确定性定量评估方法

1) 蒙特卡罗法(Monte Carlo Method, MCM)于20世纪40年代中期被提出的一种基于概率统计理论的独立方法，来估算和描述函数的统计量，求得问题的近似解。基本思想是通过实验方法(简单抽样US、重要性抽样IS、拒绝被抽样RS)，当实验次数足够多时，凭借事件出现的频率来估计随机事件的概率或得到随机变量的某些数学特征，并将其作为问题的近似解。优点是对随机过程的模拟真实并能较好反应其统计规律，其缺点是受随机抽样的可靠性影响和模拟次数限制，解决复杂问题时收敛速度较慢。广泛应用于金融界、经济学、物理学和工程学等领域 [21]。

2) 马尔科夫链蒙特卡罗法(Markov Chain Monte Carlo Method, MCMC)是通过构建马尔科夫链使样本收敛至平稳分布，再进行抽样处理。相对传统静态的MCM，MCMC主要用来处理复杂高维积分运算，克服传统MCM静态缺陷并提高精度，其抽样方法有Gibbs抽样法、Metropolis-Hastings抽样法和Slice Sampling抽样法。广泛用于贝叶斯统计、计算物理学、计算生物学等领域 [22] [23]。

3) 贝叶斯理论(Bayesian Decision Theory)把概率解释为人对某一事件发生的相信程度，参数的后验概率密度是在先验密度和实测数据的基础上得来的。贝叶斯优点在于它有着牢固的理论框架，能将先验信息和数据按照特定原理结合起来，贝叶斯法基于实际观测数据，对于任何数量的假设都能够直接赋予后验概率。同时它严格遵循似然原则，在水文模型中具有广泛应用 [24]。缺点是贝叶斯统计中的先验概率分布选择没有标注，只能凭借主观判断选择，对水文频率和水文模型参数按照需信息原则会引起其它不确定性，计算成本高，模型参数较多时对后验分布的估计需要做复杂积分运算。

${f}_{post}\left(\theta |x\right)=\frac{P\left(x|\theta \right)\cdot {f}_{pri}\left(\theta \right)}{\int P\left(x|\theta \right){f}_{pri}\left(\theta \right)\text{d}\theta }$ (1)

4) GLUE法(Generalized Likelihood Uncertainty Estimation)是基于MCM的模型率定和不确定分析方法，主要思想是异参同效理论，即模型存在多组最优参数，在不确定分析中必须考虑进去。GLUE法在进行不确定分析时通过四步来实现：① 基于参数的先验分布，通过随机抽样产生大量参数组。② 定义似然目标函数，设定可行参数阈值，计算似然值。③ 计算可行参数的后验分布。④ 预估每个时间步长上模拟值的置信区间。

4. 气候变化预估不确定性

Figure 3. Probability distribution of surface temperature (PDF: probability density function) [6]

Figure 4. Global CO2 budget and flux [27]. (a) The annual flux of CO2 since the industrial revolution (the greater than 0 is “carbon source” and less than 0 is “carbon sink” in the ordinate); (b) Increased CO2 in the atmosphere due to human activities from 2006 to 2015

5. 应用实例

Figure 5. The HBV model simulates the 95% confidence space between wet and dry years [29]

Figure 6. Xinanjiang model simulates the 95% confidence space between wet and dry years [29]

6. 总结与讨论

1) 目前对气候变化研究多部分归结于人类活动带来的影响，缺乏对气候系统本身的研究。事实上人类活动和气候系统自身均存在不确定性，两者之间相辅相成、相互反馈，是一个相互复杂不可分割的体系，因此在今后的研究中应加强对气候系统自身的模拟探索并融入其它因素，不断完善知识体系和对方法、模型的改进。

2) 20世纪40年代出现的高温、50~70年代出现的降温无法用温室气体变化解释，表明自然因素，如太阳活动、火山活动乃至大洋热盐环流在年代际温度变化中具有重要作用，太阳辐射照度已不足以解释相应的气候变化。目前，大多数学者已经注意到银河宇宙线的作用，太阳活动减弱，银河宇宙线增强，地球大气低云量增加导致气候变冷，但该影响机制有待近一步深入研究。

3) 气候变化相关的性质、原因和效应的不确定性与我们过去、现在和未来决策在某种连续但非线性的动态当中的影响息息相关。在今后气候变化发展和研究中必须重视伦理义务，承担减缓和适应气候变化以及承担国际合作义务，并有效地协调气候变化方面的国际合作。

4) IPCC目前对气候科学的定量评估仍基于可能性描述，定性评估建立在一致性和普遍性的结论基础上，明确有效性的信度和可能性的概率作为对不确定性进行定性和定量表达的衡量标准，作为区别于可能性和信度的相对统一的标准方法。将定性和定量评估统筹到处理不确定性方法中，为处理不确定性提供更合理的综合型框架，也在某一程度上确保了所提供信息的质量。但这样的探索方式是否能够满足决策层对于科学信息质量的要求，还需实践的近一步检验。

7. 建议与方向

① 从数据获取分析与野外实验方面相结合来减少不确定性(高分辨率、遥感、地面雷达信息同化融合，建立多时空尺度数据集，加强野外试验观测)；基于大数据技术融合多源数据，增加输入资料的精确性与完备性。② 改进已有模型(需考虑模型不均匀性、量化水文模型、改善模型结构)。③ 新方法的研究(发展基于尺度及多尺度理论、非线性水文动力模式和生态水文关系、复杂系统分析方法、计算智能模拟方法等新的水文理论；开发新的多尺度水文空间分布式模拟方法，以描述内在的水文多尺度不均匀性、非线性、复杂性和尺度现象)，加强完善理论方法，在提高水文循环过程机理认识和减少不确定性应用中发展变化环境下的水文学理论(随机水文学、模糊水文学、灰色系统水文学的学科体系)。④ 未来应加强以气候自然变异、人为气候变化和人类活动三源分解的环境变化影响研究，增加水文模型与区域气候模式的多项耦合程度。

[1] NEMEC, J., SCHAAKE, J. Sensitivity of water resources system to cli-mate variation. Hydrological Science, 1982, 27(3): 327-343.
https://doi.org/10.1080/02626668209491113

[2] ARNELL, N. W. A simple water balance model for the simulation of stream flow over a large geographic domain. Journal of Hydrology, 1999, 217: 314-355.
https://doi.org/10.1016/S0022-1694(99)00023-2

[3] WMO. Intercomparison of conceptual models used in operational hydrological forecasting. Operational hydrological report No. 7. Geneva: WMO, 1975.

[4] WMO. Simu-lated real-time intercomparison of hydrological models. Operational hydrological report No. 38. Geneva: WMO, 1992.

[5] 王国庆, 荆新爱, 陈江南, 等. 流域水文模型在清涧河流域的比较[J]. 灌溉排水学报, 2005(3): 28-31. WANG Guoqing, JING Xinai, CHEN Jiangnan, et al. Application comparison of hydrological models in Qingjianhe River Basin of Middle Yellow River. Journal of Irrigation and Drainage, 2005(3): 28-31. (in Chinese)

[6] 李琪. 全国水文预报技术竞赛参赛流域水文模型分析[J]. 水科学进展, 1998, 9(2): 191-195. LI Qi. Analysis and discussion related to the hydrological watershed models used in the first hydrological forecasting technol-ogy competition of China. Advances in Water Science, 1998, 9(2): 191-195. (in Chinese)

[7] HU, C. H., GUO, S. L. Inter-comparison of watershed hydrological models based on the storage curve of watershed. In The proceedings of the second in-ternational yellow river forum volume 3. Zhengzhou: The Yellow River Conservancy Press, 2005: 297-308.

[8] 赵宇, 陈松涛, 钱键. Monte-Carlo法在测量不确定度评定中的应用[J]. 仪器仪表学报, 2004(4): 501-504. ZHAO Yu, CHEN Songtao and QIAN Jian. Application of monte-carlo method for evaluating uncertainty of measurement re-sults. Chinese Journal of Scientific Instrument, 2004(4): 501-504. (in Chinese)

[9] GILKS, W. R. Markov chain monte carlo. In Encyclopedia of Biostatistics. Hoboken: John Wiley & Sons, Ltd., 2005: 1-8.
https://doi.org/10.1002/0470011815.b2a14021

[10] HASTINGS, W. K. Monte carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97-109.
https://doi.org/10.1093/biomet/57.1.97

[11] YANG, J. Hydrological modeling of the Chaohe Basin in China: Statistic model formulation and Bayesian inference. Journal of Hydrology, 2007, 340(3): 167-182.
https://doi.org/10.1016/j.jhydrol.2007.04.006

[12] DUAN, Q. Y, PHILLIPS, T. J. Bayesian estimation of local signal and noise in multimodel simulations of climate change. Journal Geophysics Resources, 2010, 115: D18123.
https://doi.org/10.1029/2009JD013654

[13] 王绍武. 全球气候变暖的争议[J]. 科学通报, 2010, 55(16): 1529-1531. WANG Shaowu. The global warming controversy. Chinese Science Bulletin, 2010, 55(16): 1529-1531. (in Chi-nese)

[14] CDIAC. Monthly carbon dioxide concentration. 2016. http://cdiac.ornl.gov

[15] 王思媛, 孙利敏, 胡高辉, 等. HBV模型与新安江模型在黄河源区的应用比较[J]. 水电能源科学, 2016, 34(12): 41-45+14. WANG Siyuan, SUN Limin, HU Gaohui, et al. Comparison of HBV and Xin’anjiang model’s application of source region of Yellow River. Water Resources and Power, 2016, 34(12): 41-45+14. (in Chinese)

[16] 夏军, 谈戈. 全球变化与水文科学新的进展与挑战[J]. 资源科学, 2002, 24(3): 1-7. XIA Jun, TAN Ge. Hydrological science towards global change: Progress and challenge. Resources Science, 2002, 24(3): 1-7. (in Chinese)

[17] 夏军, 刘春蓁, 任国玉. 气候变化对我国水资源影响研究面临的机遇与挑战[J]. 地球科学进展, 2011, 26(1): 1-12. XIA Jun, LIU Chunzhen and REN Guoyu. Opportunity and challenge of the climate change impact on the water resource of China. Advances in Earth Science, 2011, 26(1): 1-12. (in Chinese)

[18] 卡米莉•费特尔, 让-菲利普•瓦奥布, 张海燕. 气候变化、不确定性和伦理视角: 决策工具的作用[J]. 国际社会科学杂志(中文版), 2015, 32(3): 49-66 + 6-7 + 11. FERTEL, C., WAAUB, J.-P. and ZHANG Haiyan. Climate change, uncertainty and ethical perspectives: The role of deci-sion-making tools. International Social Science Journal (Chinese Edition), 2015, 32(3): 49-66 + 6-7 + 11. (in Chinese)

[19] 魏军晓, 岑况. “深时”古气候对现代全球变暖及不确定性的启示[J]. 自然杂志, 2018, 40(6): 451-458. WEI Junxiao, CEN Kuang. Paleoclimate implication for the global warming and its uncertainties. Chinese Journal of Nature, 2018, 40(6): 451-458. (in Chinese)

[20] 王娜. 对气候科学不确定性的分析[J]. 科技风, 2017(5): 127-128. WANG Na. An analysis of uncertainty in climate science. Technology Wind, 2017(5): 127-128. (in Chinese)

[21] 段青云, 夏军, 缪驰远, 等. 全球气候模式中气候变化预测预估的不确定性[J]. 自然杂志, 2016, 38(3): 182-188. DUAN Qingyun, XIA Jun, MIAO Chiyuan, et al. The uncertainty in climate change projections by global climate models. Chinese Journal of Nature, 2016, 38(3): 182-188. (in Chinese)

[22] 张利平, 于松延, 段尧彬, 等. 气候变化和人类活动对永定河流域径流变化影响定量研究[J]. 气候变化研究进展, 2013, 9(6): 391-397. ZHANG Liping, YU Songyan, DUAN Yaobin, et al. Quantitative assessment of the effects of climate change and human activ-ities on runoff in the Yongding River Basin. Climate Change Research, 2013, 9(6): 391-397. (in Chinese)

[23] 张建云, 王国庆. 气候变化对水文水资源影响研究[M]. 北京: 科学出版社, 2007: 1. ZHANG Jianyun, WANG Guoqing. Study on the impact of climate change on hydrology and water resources. Beijing: Science Press, 2007: 1. (in Chinese)

[24] 刘艳丽, 张建云, 王国庆, 等. 环境变化对流域水文水资源的影响评估及不确定性研究进展[J]. 气候变化研究进展, 2015, 11(2): 102-110. LIU Yanli, ZHANG Jianyun, WANG Guoqing, et al. Review for impacts assessment of environmental change on hydrology and water resources and uncertainty in catchment scale. Climate Change Research, 2015, 11(2): 102-110. (in Chinese)

[25] 田烨. 气候变化对极端径流影响评估中的不确定性研究[D]: [博士学位论文]. 杭州: 浙江大学, 2013. TIAN Ye. Uncertainty analysis of the extreme flows under the impact of climate change. Hangzhou: Zhejiang University, 2013. (in Chinese)

[26] CARTER, T. R. Preliminary guidelines of assessing impacts of climate. Working Group II of the Intergo-vernmental Panel of Climate Change, 1993.

[27] 郭亚男. 量化气候变化对水文影响的降尺度方法的不确定性[J]. 水利水电快报, 2012, 33(8): 15-19 + 24. GUO Yanan. Uncertainty in scale-down methods for quantifying the effects of climate change on hydrology. Express Water Resources & Hydropower Information, 2012, 33(8): 15-19 + 24. (in Chinese)

[28] 王国庆. 气候变化对黄河中游水文水资源影响的关键问题研究[D]: [博士学位论文]. 南京: 河海大学, 2006. WANG Guoqing. Impacts of climate change on hydrology and water resources in the middle reaches of te Yellow River Basin. Nanjing: Hehai University, 2006. (in Chinese)

[29] 王思媛, 胡高辉, 孙利敏, 等. 水文模型模拟水文极值的不确定性分析[J]. 人民黄河, 2018, 40(2): 1-9. WANG Siyuan, HU Gaohui, SUN Limin, et al. Uncertainty analyses of hydrological model to hydrological extremum. Yellow River, 2018, 40(2): 1-9. (in Chinese)

Top