有限个线段映射的笛卡尔乘积的局部变差增长与局部拓扑熵
Pointwise Variation Growth and Entropy of the Descartes Product of a Few of Interval Maps

作者: 黎日松 , 陈增雄 :;

关键词: 乘积有界变差变分原理拓扑熵局部变差增长全局变差增长Product Bounded Variation Variational Principle Topological Entropy Local Growth Rate of Variation Total Growth Rate of Variation

摘要: 暂无

文章引用: 黎日松 , 陈增雄 (2011) 有限个线段映射的笛卡尔乘积的局部变差增长与局部拓扑熵。 理论数学, 1, 184-188. doi: 10.12677/pm.2011.13036

参考文献

[1] A. Katok, B. Hasselblatt. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press, 1995.

[2] G. Chen, T. Huang and Y. Huang. Chaotic behavior of interval maps and total vaiations of iterates. International Journal of Bifurcation and Chaos, 2004, 14(7): 2161-2186.

[3] M. Misiurewcz, W. Szlenk. Entropy of piecewise monotone maps. Studia Mathematica, 1980, 67: 45-63.

[4] C. Preston. Iterates of piecewise monotone mappings on an interval. Lecture Notes in Mathematics 1347. Berlin, Heidelberg: Springer-Verlag, 1988.

[5] G. Chen, S. B. Hsu and T. Huang. Analyzing displacement term's memory effect in a Vander Pol type boundary condition to prove chaotic vibration of the wave equation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12(5): 965-981.

[6] G. Chen, T. Huang, J. Juang and D. Ma. Unbounded growth of total variations of snapshots of the ID linear wave equation due to the chaotic behavior of iterates of composite nonlinear boundary reflection relation. In: G. Chen, et al., (Ed.), Control of nonlinear distributed parameter systems. New York: Marcel Dekker Lecture Notes on Pure & Applied Mathematics, 2001: 15-43.

[7] Y. Huang. Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection. International Journal of Bifurcation and Chaos, 2003, 13(5): 1183-1196.

[8] 黄煜, 罗俊, 周作领. 线段映射的局部变差增长与局部拓扑熵[J]. 数学学报, 2006, 49(2): 311-316.

[9] P. Walters. An introduction to ergodic theory, graduate texts in mathematics 79. New York: Springer-Verlag, 1982.

分享
Top