一类微分方程解和小函数的关系
The Relation between Solutions of a Class of Differential Equations with Functions of Small Growth

作者: 刘薇 , 陈宗煊 :;

关键词: 微分方程整函数小函数收敛指数Differential Equation Entire Function Function of Small Growth Exponent of Convergence

摘要:

在文中研究了微分方程f"+A1f'+A0f=0 f"+ A0f=0的解以及它们的一阶导数与小函数的关系,其中A0A1是不恒为零的有限级整函数,其零点收敛指数小于其增长级,且A0/A1的增长级等于A0A1增长级的最大值。In this paper, we investigate the relation between solutions, their 1st derivatives of equationsf"+A1f'+A0f=0 and f"+A0f=0 and functions of small growth, where A0,A1are entire functions with finite orders and not identically zero.

The exponent of convergence of the zero-sequence of Aj is less than the order of Aj, and the order of A0/A1 equals the maximum of the orders of A0 and A1.



Abstract:

文章引用: 刘薇 , 陈宗煊 (2011) 一类微分方程解和小函数的关系。 理论数学, 1, 177-183. doi: 10.12677/pm.2011.13035

参考文献

[1] W. K. Hayman. Meromorphic functions. Oxford: Clarendon Press, 1964.

[2] 杨乐. 值分布论及其新研究[M]. 北京: 科学出版社, 1982.

[3] 仪洪勋, 杨重骏. 亚纯函数的唯一性理论[M]. 北京: 科学出版社, 1995.

[4] 陈宗煊. 二阶复域微分方程解的不动点与超级[J]. 数学物理学报, 2000, 20(3): 425-432.

[5] 曹春雷, 陈宗煊. 一类整函数系数线性微分方程解的增长级和零点[J]. 应用数学学报, 2002, 25(1): 123-131.

[6] Z. X. Chen. Zeros of meromorphic solutions of higher order linear differential equations. Analysis, 1994, 14: 425-438.

[7] G. Gundersen. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. Journal of the London Mathematical Society, 1988, 37(2): 88-104.

[8] S. A. Gao. On the complex oscillation of solutions of non-homogeneous linear differential equations with polynomial coefficients. Comment mathematici Universitatis Sancti Pauli, 1989, 38(1): 11-20.

[9] 何育赞, 肖修治. 代数体函数与常微分方程[M]. 北京: 科学出版社, 1998.

分享
Top