﻿ 分析及抑制永磁同步电机电磁噪声方法综述

# 分析及抑制永磁同步电机电磁噪声方法综述A Survey of Vibration Noise Analysis and Suppression Methods for Permanent Magnet Synchronous Motors

Abstract: With people’s pursuit of comfort, low noise design of many kinds of electrical equipment has be-come a research hotspot. Because motor is widely used in electrical equipment, such as electric vehicles, large machinery, etc., the study of motor vibration and noise is one of the important problems that we need to solve urgently in motor design and application. Motor vibration noise is mainly acoustic noise, mechanical noise and electromagnetic noise, in which electromagnetic noise is the main source of noise, and electromagnetic noise is mainly caused by Maxwell force and magnetostrictive force. The noise of electromagnetic vibration is mainly caused by Maxwell force and magnetostrictive force. Firstly, this paper analyses the causes of electromagnetic noise of motor, and how to analyze and calculate the method of noise. Then, from the angle of electromagnetic force and harmonics which cause electromagnetic noise, it analyses various effective methods and development status of noise suppression and elimination at home and abroad. In order to reduce the influence of magnetostrictive force on motor vibration, the structure optimization design of motor stator and rotor and the control of harmonic components are mainly discussed. Some electromagnetic-mechanical coupling models and numerical calculation methods of motor are also described. The direction of future research on noise suppression is pointed out. Finally, the shortcomings of current research and the main contents of future research are summarized to provide reference for the follow-up research on suppressing motor noise.

1. 引言

1.1. 优化电磁力

$P=\left(\frac{{B}_{v}}{f}\right)×\left(\frac{{B}_{u}}{f}\right)$ (1)

${P}_{0}=P\frac{{R}_{0}}{{R}_{v}}$ (2)

(3)

1.2. 分析计算振动和噪声的方法

(4)

。 (5)

1.3. 控制消除谐波影响

2. 考虑磁致伸缩效应降噪

2.1. 磁致伸缩力与麦克斯韦力

(6)

2.2. 建立模型分析磁致伸缩力

2.3. 考虑磁致伸缩力的降噪方法

3. 总结与展望

1) 优化定转子的结构设计可以在一定程度上降低电机径向力和电机谐波，成功抑制部分电机振动噪声。但是同时也会使电机的稳定性和可靠性随之下降。所以设计出可以减小径向力和切向力对电机振动的影响又可以不影响电机的稳定性的定转子结构依然需要进行研究。

2) 关于电机，电感器，电力变压器的磁致伸缩力的研究比较多，但是利用减小磁致伸缩力来抑制电机振动噪声的研究比较少。目前提出来的软磁复合材料虽然能够在抑制电机噪声方面起到作用，但是受限于其高应力灵敏度和低磁饱和度，会在一定程度上限制它们的使用，因此还需继续开发新型的软磁复合材料。

3) 从减小空气动力性噪声的研究方法很多，比如消音器，加强外壳设计，改善装配的工艺等，这些方法依然有很大的改进空间。

[1] Zeze, E. and Akatsu, K. (2012) Research on Vibration Analysis and Noise-Reduction Technique of PM Motor. 2012 20th International Conference on Electrical Machines, Marseille, France, 2-5 September 2012, 458-463.
https://doi.org/10.1109/ICElMach.2012.6349909

[2] Lee, S.H., Han, K.K., Ahn, H.J., Kang, G.H., Son, Y.D. and Kim, G.T. (2008) A Study on Reduction of Vibration Based on Decreased Cogging Torque for Interior Type Permanent Magnet Motor. 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, 5-9 October 2008, 1-6.
https://doi.org/10.1109/08IAS.2008.40

[3] Jung, J.-W. and Lee, S.-H. (2010) Reduction Design of Vibration and Noise in IPMSM Type Integrated Starter and Generator for HEV. IEEE Transactions on Magnetics, 46, 2454-2457.
https://doi.org/10.1109/TMAG.2010.2041434

[4] 王建民, 让余奇. 电机噪声分析及抑制措施[J]. 船电技术, 2010, 30(8): 8-10+34.

[5] 陈永校. 电机的振动与噪声分析[M]. 杭州: 浙江大学出版社, 1987: 12-20.

[6] 祝丽花. 叠片铁心磁致伸缩效应对变压器、交流电机的振动噪声影响研究[D]: [博士学位论文]. 天津: 河北工业大学, 2013.

[7] Lee, G.D., Kim, G.T., Shin, H.K. and Kim, C.J. (2015) The Optimum Design of Interior Permanent Magnet Synchronous Motor for the Vibration Reduction. 2015 18th International Conference on Electrical Machines and Systems, Pattaya, 25-28 October 2015, 227-231.
https://doi.org/10.1109/ICEMS.2015.7385032

[8] Hong, J.-P., Ha, K.-H. and Lee, J. (2002) Stator Pole and Yoke Design for Vibration Reduction of Switched Reluctance Motor. IEEE Transactions on Magnetics, 38, 929-932.
https://doi.org/10.1109/20.996239

[9] 孙剑波, 詹琼华, 王双红, 马志源. 开关磁阻电机减振降噪和低转矩脉动控制策略[J]. 中国电机工程学报, 2008, 28(12): 134-138.

[10] 王宏华, 陈永校, 许大中. 开关磁阻调速电机定子振动抑制[J]. 电工技术学报, 1998, 13(3): 9-12.

[11] Zhu, Z.Q., Xia, Z.P., Wu, L.J. and Jewell, G.W. (2009) Influence of Slot and Pole Number Combination on Radial Force and Vibration Modes in Fractional Slot PM Brushless Machines Having Single- and Double-Layer Windings. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 20-24 September 2009, 3443-3450.
https://doi.org/10.1109/ECCE.2009.5316553

[12] Zuo, S. and Lin, F. (2015) Noise Analysis, Calculation, and Reduction of External Rotor Permanent-Magnet Synchronous Motor. IEEE Transactions on Magnetics, 62, 6204-6212.
https://doi.org/10.1109/TIE.2015.2426135

[13] Zhu, L., Yang, Q., Yan, R., et al. (2014) Magnetic and Vibration Element Analysis of PM Motor under Frequencies Including Magnetostriction. International Conference on Electrical Machines and Systems, Hangzhou, 22-25 October 2014, 1136-1139.
https://doi.org/10.1109/ICEMS.2014.7013641

[14] Zhu, Z.Q., Xia, Z.P., Wu, L.J. and Jewell, G.W. (2010) Analytical Modeling and Finite-Element Computation of Radial Vibration Force in Fractional-Slot Permanent-Magnet Brushless Machines. IEEE Transactions on Industry Applications, 46, 1908-1918.
https://doi.org/10.1109/TIA.2010.2058078

[15] Zhu, Z.Q., Jamil, M.L.M. and Wu, L.J. (2011) Influence of Slot and Pole Number Combinations on Unbalanced Magnetic Force in Permanent Magnet Machines. 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, 17-22 September 2011, 3291-3298.
https://doi.org/10.1109/ECCE.2011.6064213

[16] Krotsch, J. and Piepenbreier, B. (2012) Radial Forces in External Rotor Permanent Magnet Synchronous Motors with Non-Overlapping Windings. IEEE Transactions on Industrial Electronics, 59, 2267-2276.
https://doi.org/10.1109/TIE.2011.2151827

[17] Husain, I. (2010) Analytical Model for Predicting Noise and Vibration in Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications, 46, 2346-2354.
https://doi.org/10.1109/TIA.2010.2070473

[18] Torregrossa, D., Peyraut, F., Fahimi, B., M’Boua, J. and Miraoui, A. (2011) Multiphysics Finite-Element Modeling for Vibration and Acoustic Analysis of Permanent Magnet Synchronous Machine. IEEE Transactions on Energy Conversion, 26, 490-500.
https://doi.org/10.1109/TEC.2010.2080681

[19] Torregrossa, D., Fahimi, B., Peyraut, F. and Miraoui, A. (2012) Fast Computation of Electromagnetic Vibrations in Electrical Machines via Field Reconstruction Method and Knowledge of Mechanical Impulse Response. IEEE Transactions on Industrial Electronics, 59, 839-847.
https://doi.org/10.1109/TIE.2011.2143375

[20] Dos Santos, F.L.M., et al. (2014) Multiphysics NVH Modeling: Simulation of a Switched Reluctance Motor for an Electric Vehicle. IEEE Transactions on Industrial Electronics, 61, 469-476.
https://doi.org/10.1109/TIE.2013.2247012

[21] Kim, D.Y., Jang, G.H. and Nam, J.K. (2013) Magnetically Induced Vibrations in an IPM Motor Due to Distorted Magnetic Forces Arising from Flux Weakening Control. IEEE Transactions on Magnetics, 49, 3929-3932.
https://doi.org/10.1109/TMAG.2013.2238614

[22] Islam, M., Islam, R. and Sebastian, T. (2014) Noise and Vibration Characteristics of Permanent Magnet Synchronous Motors Using Electromagnetic and Structural Analyses. IEEE Transactions on Industry Applications, 50, 3214-3222.
https://doi.org/10.1109/TIA.2014.2305767

[23] Chenjie, L. and Fahimi, B. (2014) Prediction of Acoustic Noise in Switched Reluctance Motor Drives. IEEE Transactions on Energy Conversion, 29, 250-258.
https://doi.org/10.1109/TEC.2013.2291702

[24] Torregrossa, D., Paire, D., Peyraut, F., Fahimi, B. and Miraoui, A. (2012) Active Mitigation of Electromagnetic Vibration Radiated by PMSM in Fractional-Horsepower Drives by Optimal Choice of the Carrier Frequency. IEEE Transactions on Industrial Electronics, 59, 1346-1354.
https://doi.org/10.1109/TIE.2010.2081961

[25] Kim, D.-J., Jung, J.-W., Hong, J.-P., Kim, K.-J. and Park, C.-J. (2012) A Study on the Design Process of Noise Reduction in Induction Motors. IEEE Transactions on Magnetics, 48, 4638-4641.
https://doi.org/10.1109/TMAG.2012.2197187

[26] Cassat, A., et al. (2012) A Practical Solution to Mitigate Vibrations in Industrial PM Motors Having Concentric Windings. IEEE Transactions on Industry Applications, 48, 1526-1538.
https://doi.org/10.1109/TIA.2012.2210172

[27] Hur, J., Reu, J.-W., Kim, B.-W. and Kang, G.-H. (2011) Vibration Reduction of IPM-Type BLDC Motor Using Negative Third Harmonic Elimination Method of Air-Gap Flux Density. IEEE Transactions on Industry Applications, 47, 1300-1309.
https://doi.org/10.1109/TIA.2011.2128850

[28] Miyamas, Y., Kometani, H., Akatsu, K. and Ishizuka, M. (2017) Vibration Reduction by Applying Carrier Phase-Shift PWN on Dual Three-Phase Windings Permanent Magent Synchronous Motor. 2017 IEEE International Electric Machines and Drives Conference, Miami, FL, 21-24 May 2017, 1-6.
https://doi.org/10.1109/IEMDC.2017.8002021

[29] Gulez, K. and Adam, A.A. (2008) Torque Ripple and EMI Noise Minimization in PMSM Using Active Filter Topology Ang Field-Oriented Control. IEEE Transactions on Industrial Electronics, 55, 251-257.
https://doi.org/10.1109/TIE.2007.896295

[30] Asano, Y. and Honda, Y. (2002) Novel Noise Improvement Technique for a PMSM with Concentrated Winding. Proceedings of the Power Conversion Conference, Osaka, Japan, 2-5 April 2002, 460-465.

[31] Liu, M. and Hubert, O. (2017) Reduction of Power Transformer Coer Noise Generation Due to Magnetostriction-Induced Deformations Using Fully Coupled Finite-Element Modeling Optimization Procedures. IEEE Transactions on Magnetics, 53, Article No. 8400511.
https://doi.org/10.1109/TMAG.2017.2687409

[32] Hilgert, T., Vandevelde, L. and Melkebeek, J. (2007) Numerical Analysis of the Contribution of Magnetic Forces and Mag-netostriction to the Vibrations in Induction Machines. IET Science, Measurement & Technology, 1, 21-24.
https://doi.org/10.1049/iet-smt:20060018

[33] Rossi, M. and Le Besnerais, J. (2015) Vibration Reduction of Inductors under Magnetostrictive and Maxwell Forces Excitation. IEEE Transactions on Magnetics, 51, 1-6.
https://doi.org/10.1109/TMAG.2015.2469643

[34] Belahcen, A. (2004) Magnetoelasticity Magnetic Forces and Magnetostriction in Electrical Machines.

[35] Mohammad, O.A. (2001) Numerical Prediction of Magnetostrictive Behaviour in Non-Oriented Electrical Steel Sheets. Proceedings. IEEE SoutheastCon 2001, Clemson, SC, 1 April 2001, 179-182.

[36] Somkun, S., Moses, A.J. and Anderson, P.J. (2009) Effect of Magnetostriction Anisotropy in Nonoriented Electrical Steels on Deformation of Induction Motor Stator Cores. IEEE Transactions on Magnetics, 45, 4744-4747.
https://doi.org/10.1109/TMAG.2009.2022320

[37] Zhu, L., Yang, Q., Yan, R., Li, Y. and Yan, W. (2014) Magnetoelastic Numerical Analysis of Permanent Magnet Synchronous Motor Including Magnetostriction Effects and Harmonics. IEEE Transactions on Applied Superconductivity, 24, Article No. 0503304.
https://doi.org/10.1109/TASC.2013.2288683

[38] Mori, D. and Ishikawa, T. (2005) Force and Vibration Analysis of Induction Motors. IEEE Transactions on Magnetics, 41, 1948-1951.
https://doi.org/10.1109/TMAG.2005.846262

[39] Arkkio, A. and Holopainen, T.P. (2016) Space-Vector Models for Torsional Vibration of Cage Induction Motors. IEEE Transactions on Industry Applications, 52, 2988-2995.
https://doi.org/10.1109/TIA.2016.2547361

[40] Martinez, J., Belahcen, A. and Muetze, A. (2017) Analysis of the Vibration Magnitude of an Induction Motor with Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, No. 99, 1-10.

[41] Ben, T., Yang, Q., Yan, R. and Zhu, L. (2017) Stress Analysis of Motor Cores Based on the Measurement of Magnetostriction of Non-Oriented Silicon Steel Sheet. 2017 20th International Conference on Electrical Machines and Systems, Sydney, 11-14 August 2017, 1-4.

[42] Shahaj, A. and Garvey, S.D. (2011) A Possible Method for Magnetostrictive Reduction of Vibration in Large Electrical Machines. IEEE Transactions on Magnetics, 47, 374-385.
https://doi.org/10.1109/TMAG.2010.2095875

[43] Ertl, M. and Landes, H. (2007) Investigation of Load Noise Generation of Large Power Transformer by Means of Coupled 3-D FEM Analysis. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 26, 788-799.
https://doi.org/10.1108/03321640710751226

[44] De Lacheisserie, E.D.T. (1993) Magnetostriction. CRC Press, Boca Raton, FL.

[45] 胡志强. 电机制造工艺[M]. 北京: 机械工业出版社, 2011.

[46] Jung, J.-W. and Kim, D.-J. (2010) Effect of Skewed Rotor Type IPMSM on Noise and Vibration. Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, 9-12 May 2010, 1.

[47] Zhu, L., et al. (2013) Numerical Computation for a New Way to Reduce Vibration and Noise Due to Magnetostriction and Magnetic Forces of Transformer Cores. Journal of Applied Physics, 113, 2014-2017.
https://doi.org/10.1063/1.4800077

[48] Oda, Y., Toda, H., Shiga, N., Kasai, S. and Hiratani, T. (2012) Effect of Si Content on Iron Loss of Electrical Steel Sheet under Compressive Stress. IEEE Transactions on Magnetics, 50, 1-4.
https://doi.org/10.1109/TMAG.2013.2290321

Top