IBM模型对偶–偶核100Zr的理论研究
Study of Even-Even Nuclei 100Zr by Interacting Boson Model

作者: 董鸿飞 , 王 印 , 李晓伟 , 吕立君 , 魏天枝 :赤峰学院,内蒙古 赤峰;

关键词: 偶–偶核相互作用玻色子模型能谱E-GOS曲线电磁跃迁Even-Even Nuclei Interacting Boson Model Energy Level E-GOS Curve Electromagnetic Transitions

摘要:
本文在相互作用玻色子模型框架下对偶–偶核100Zr进行了理论研究。绘制了基态带的E-GOS曲线,讨论其动力学对称性极限性质,数据分析表明100Zr是具有U(5)振动极限到SU(3)转动极限之间的过渡核,趋近于O(6)极限。同时文中也拟合了100Zr核的低能谱的谱带,并对波函数结构进行了理论研究,计算了100Zr核的低能谱部分的电磁跃迁,计算结果表明理论计算与实验值符合较好。

Abstract: Even-even nuclei 100Zr were studied within the framework of the interacting boson model. The E-Gamma Over Spin (E-GOS) was drawn, and the analysis of the dynamic symmetry limit found that 100Zr is a transition nuclei from U(5) vibrational limit to SU(3) rotational limit , close to O(6) dynamic symmetry limit. At the same time, the energy spectrum of low-lying states of 100Zr was fitted, the components of the wave function were analyzed, and the B(E2) values of transitions between low-lying states of 100Zr were analyzed respectively. The results show good agreement with the available experimental data.

1. 引言

采用唯象的理论模型是原子核结构研究的重要手段。相互作用玻色子模型(interacting boson model,简称为IBM)就是一个十分成功的研究原子核集体运动的代数模型,利用该模型,人们成功地描述了原子核低激发能谱、电磁跃迁以及相变等性质 [1]。在IBM中,假设原子核有一个稳定的双幻核芯,价核子配对成角动量是0或2的核子对,这些核子都被看作是玻色子。角动量L为0的s玻色子和L为2的d玻色子共有六种,这六种玻色子算符构成了IBM模型的哈密顿量,即能谱的生成代数是U(6)。从U(6)开始约化,有U(5)、SU(3)和O(6)三种约化方式。约化的三个子群链为:

U ( 6 ) U ( 5 ) O ( 5 ) O ( 3 ) O ( 2 ) U ( 6 ) SU ( 5 ) O ( 3 ) O ( 2 ) U ( 6 ) O ( 6 ) O ( 5 ) O ( 3 ) O ( 2 ) (1)

这三个子群链分别对应于不同类型的动力学对称性,用来描述原子核的三种集体运动极限:振动、转动和γ-不稳定特性 [2] - [7]。

三个极限的晕态能谱和能级衰变能分别为:

E I = I 2 ω E γ ( I I 2 ) = ω

E I = 2 2 J I ( I + 1 ) E γ ( I I 2 ) = 2 2 J ( 4 I 2 )

E I = I ( I + 6 ) 16 E ( 2 + ) E γ ( I I 2 ) = E ( 2 + ) 4 ( I + 2 )

[8],做I-R曲线既为E-GOS曲线。

将基向量表示为 | Ψ = | n d , n β , n Δ , L d , L ,哈密顿量可写成多极展开形式为:

H = EPS n d + 1 2 ELL ( L L ) + 1 2 QQ ( Q Q ) 5 7 OCT [ ( d d ˜ ) ( 3 ) × ( d d ˜ ) ( 3 ) ] 0 ( 0 ) + 15 HEX [ ( d d ˜ ) ( 4 ) × ( d d ˜ ) ( 4 ) ] 0 ( 0 ) (2)

其中:

L L = 10 3 [ ( d d ˜ ) ( 1 ) × ( d d ˜ ) ( 1 ) ] 0 (0)

Q Q = 5 [ { ( s d ˜ + d s ) ( 2 ) + CHQ 5 ( d d ˜ ) ( 2 ) } × { ( s d ˜ + d s ) ( 2 ) + CHQ 5 ( d d ˜ ) ( 2 ) } ] 0 (0)

式中的EPS、ELL、QQ、OCT、HEX、CHQ为模型的可调参数 [9]。本文工作是在合理的范围内调节参数值,使计算结果符合实验数据。

2. 计算结果

本文研究的是100Zr,它有10个价质子(空穴)和10个价中子,共组成10个玻色子。

2.1. 各级限值和E-GOS曲线

根据其实验能谱可以计算出R值并做E-GOS曲线,R值见表1。相应的E-GOS曲线见图1。本文选取了实验数据 20 1 + 以下的角动量为偶数的能级。

Table 1. Experimental data and the dynamic symmetry limit of 100Zr

表1. 100Zr核的实验及各动力学极限值

Figure 1. Curve: the E-Gamma over spin of 100Zr

图1. 100Zr核的E-GOS曲线

2.2. 模型参数

通过拟合实验的能级,确定了模型的参数,见表2

Table 2. Hamiltonian matrix of 100Zr

表2. 100Zr的哈密顿参数

2.3. 能谱结果

在选定的参数下,理论计算的能级与实验能级的对比图见图2。可见所选参数较好地拟合了低激发态能谱,其中Band 1和Band 2的符合程度均很好,只是在较合理的范围内存在一定的误差。

Figure 2. Experimental energy states and theoretical energy states of 100Zr

图2. 100Zr的实验能谱与理论能谱

2.4. 波函数

确定了模型参数,我们就可以给出每条能级具体的波函数,本文主要用到的波函数的结构为:

| 0 1 + 0.5248 | s 10 d 0 + 0.4457 | s 8 d 2 + 0.0292 | s 6 d 4 + 0.0003 | s 4 d 6

| Ψ 0 1 0.724 | 0 , 0 , 0 , 0 , 0 + + 0.668 | 2 , 1 , 0 , 0 , 0 + + 0.171 | 4 , 2 , 0 , 0 , 0 + + 0.018 | 6 , 3 , 0 , 0 , 0 + + 0.001 | 8 , 4 , 0 , 0 , 0 +

| 0 2 + 0.4704 | s 10 d 0 + 0.4528 | s 8 d 2 + 0.0756 | s 6 d 4 + 0.0012 | s 4 d 6

| Ψ 0 2 0.686 | 0 , 0 , 0 , 0 , 0 + 0.673 | 2 , 1 , 0 , 0 , 0 + 0.275 | 4 , 2 , 0 , 0 , 0 + 0.035 | 6 , 3 , 0 , 0 , 0 + 0.002 | 8 , 4 , 0 , 0 , 0 +

| 0 3 + 0.8624 | s 6 d 4 + 0.1010 | s 8 d 2 + 0.0317 | s 4 d 6 + 0.0048 | s 10 d 0

| Ψ 0 3 0.069 | 0 , 0 , 0 , 0 , 0 + + 0.318 | 2 , 1 , 0 , 0 , 0 + 0.929 | 4 , 2 , 0 , 0 , 0 + 0.178 | 6 , 3 , 0 , 0 , 0 + 0.011 | 8 , 4 , 0 , 0 , 0 +

| 2 1 + 0.8335 | s 9 d 1 + 0.1519 | s 7 d 3 + 0.0105 | s 8 d 2 + 0.0002 | s 6 d 4

| Ψ 2 1 0.913 | 1 , 0 , 0 , 2 , 2 + 0.103 | 2 , 0 , 0 , 2 , 2 + + 0.390 | 3 , 1 , 0 , 2 , 2 + 0.015 | 4 , 1 , 0 , 2 , 2 + + 0.062 | 5 , 2 , 0 , 2 , 2 + 0.001 | 6 , 2 , 0 , 2 , 2 + + 0.004 | 7 , 3 , 0 , 2 , 2 +

| 2 2 + 0.7410 | s 7 d 3 + 0.1203 | s 9 d 1 + 0.0899 | s 8 d 2 + 0.0434 | s 5 d 5 + 0.0051 | s 6 d 4 + 0.0003 | s 2 d 8 + 0.0001 | s 3 d 7

| Ψ 2 2 0.347 | 1 , 0 , 0 , 2 , 2 + + 0.300 | 2 , 0 , 0 , 2 , 2 + + 0.861 | 3 , 1 , 0 , 2 , 2 + + 0.071 | 4 , 1 , 0 , 2 , 2 + + 0.208 | 5 , 2 , 0 , 2 , 2 + + 0.007 | 6 , 2 , 0 , 2 , 2 + + 0.018 | 7 , 3 , 0 , 2 , 2 + + 0.001 | 9 , 4 , 0 , 2 , 2 +

| 2 3 + 0.8338 | s 8 d 2 + 0.0599 | s 5 d 5 + 0.0564 | s 7 d 3 + 0.0451 | s 9 d 1 + 0.0040 | s 6 d 4 + 0.0007 | s 3 d 7

| Ψ 2 3 0.212 | 1 , 0 , 0 , 2 , 2 + 0.913 | 2 , 0 , 0 , 2 , 2 + + 0.238 | 3 , 1 , 0 , 2 , 2 + 0.245 | 4 , 1 , 0 , 2 , 2 + + 0.063 | 5 , 2 , 0 , 2 , 2 + 0.026 | 6 , 2 , 0 , 2 , 2 + 0.001 | 7 , 3 , 0 , 2 , 2 +

| 2 4 + 0.9079 | s 5 d 5 + 0.0656 | s 8 d 2 + 0.0262 | s 7 d 3 + 0.0002 | s 9 d 1 + 0.0001 | s 2 d 8

| Ψ 2 4 0.014 | 1 , 0 , 0 , 2 , 2 + + 0.256 | 2 , 0 , 0 , 2 , 2 + 0.002 | 3 , 1 , 0 , 2 , 2 + 0.953 | 4 , 1 , 0 , 2 , 2 + 0.004 | 5 , 2 , 0 , 2 , 2 + 0.162 | 6 , 2 , 0 , 2 , 2 + 0.009 | 7 , 3 , 0 , 2 , 2 +

| 4 1 + 0.9348 | s 8 d 2 + 0.0646 | s 6 d 4 + 0.0007 | s 4 d 4

| Ψ 4 1 0.967 | 2 , 0 , 0 , 4 , 4 + + 0.254 | 4 , 1 , 0 , 4 , 4 + + 0.027 | 6 , 2 , 0 , 4 , 4 + + 0.001 | 8 , 3 , 0 , 4 , 4 +

| 4 2 + 0.9087 | s 6 d 4 + 0.0650 | s 8 d 2 + 0.0263 | s 4 d 6 + 0.0001 | s 2 d 8

| Ψ 4 2 - 0.225 | 2 , 0 , 0 , 4 , 4 + + 0.953 | 4 , 1 , 0 , 4 , 4 + + 0.162 | 6 , 2 , 0 , 4 , 4 + + 0.009 | 8 , 3 , 0 , 4 , 4 +

| 4 3 + 0.9689 | s 7 d 3 + 0.0309 | s 5 d 5 + 0.0002 | s 3 d 7

| Ψ 4 3 0.984 | 3 , 0 , 0 , 4 , 4 + + 0.176 | 5 , 1 , 0 , 4 , 4 + + 0.013 | 7 , 2 , 0 , 4 , 4 +

| 4 4 + 0.9549 | s 5 d 5 + 0.0310 | s 7 d 3 + 0.0140 | s 3 d 7

| Ψ 4 4 0.176 | 3 , 0 , 0 , 4 , 4 + + 0.977 | 5 , 1 , 0 , 4 , 4 + + 0.118 | 7 , 2 , 0 , 4 , 4 + + 0.004 | 9 , 3 , 0 , 4 , 4 +

2.5. 电磁跃迁

利用波函数我们可以进一步研究原子核的电磁性质,本文计算了低激发能级的B(E2)值,见表3

Table 3. The B(E2) of electromagnetic transitions of 100Zr

表3. 100Zr电磁跃迁的B(E2) 值

3. 结论

本文用IBM模型对偶–偶核100Zr进行了研究,在模型所选的参数下拟合了低激发能级,计算结果在一定的误差允许范围内是合理的。同时也用能级的对应的波函数计算了约化跃迁几率。100Zr核素的E-GOS曲线结果表明100Zr是具有U(5)振动极限到SU(3)转动极限之间的过渡核,趋近于O(6)极限,具有较明显的γ-不稳定特性。

基金项目

内蒙古自治区教育厅自然科学重点项目(NJZZ17296)。

参考文献

文章引用: 董鸿飞 , 王 印 , 李晓伟 , 吕立君 , 魏天枝 (2019) IBM模型对偶–偶核100Zr的理论研究。 应用物理, 9, 403-409. doi: 10.12677/APP.2019.910049

参考文献

[1] Iachello, F. and Arima, A. (1987) The Interacting Boson Model. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511895517

[2] Arima, A. and Iachello, F. (1976) Interacting Boson Model of Collective States I. The Vibrational Limit. Annals of Physics, 99, 253-317.
https://doi.org/10.1016/0003-4916(76)90097-X

[3] Arima, A. and Iachello, F. (1978) Interacting Boson Model Of Collective Nuclear States II. The Rotational Limit. Annals of Physics, 111, 201-238.
https://doi.org/10.1016/0003-4916(78)90228-2

[4] Arima, A. and Iachello, F. (1979) Interacting Boson Model of Collective Nuclear States IV. The O(6) Limit. Annals of Physics, 123, 468-492.
https://doi.org/10.1016/0003-4916(79)90347-6

[5] Pan, F., Draayer, J.P. and Luo, Y.A. (2003) A Close Look at U(5)↔SU(3) Transitional Patterns in the Interacting Boson Model. Physics Letters B, 576, 297-302.
https://doi.org/10.1016/j.physletb.2003.09.098

[6] Liu, Y.X., Mu, L.Z. and Wei, H.Q. (2006) Approach to the Rotation Driven Vibrational to Axially Rotational Shape Phase Transition along the Yrast Line of a Nucleus. Physics Letters B, 633, 49-53.
https://doi.org/10.1016/j.physletb.2005.11.018

[7] Mu, L.Z. and Liu, Y.X. (2005 ) Rotation Driven Shape-Phase Transition of the Yrast Nuclear States with O(6) Symmetry in the Interacting Boson Model. Chinese Physics Letters, 22, 1354-1357.
https://doi.org/10.1088/0256-307X/22/6/016

[8] Zhang, J.F., Lv, L.J. and Bai, H.B. (2007) Critical Behavior in Nuclear Structure from Spherical to Axially Symmetric Deformed Shape in IBM. Chinese Physics, 16, 1841-1846.
https://doi.org/10.1088/1009-1963/16/7/022

[9] Liu, Y.X., Sun, Y., Zhou, X.H., et al. (2011) A Systematical Study of Neutron-Rich Zr Isotopes by the Projected Shell Model. Nuclear Physics A, 858, 11-31.
https://doi.org/10.1016/j.nuclphysa.2011.03.010

分享
Top