铁含量及合成方法对Sr-Fe-Co氧化物微结构和性能的影响
Effect of Iron Contents and Synthetic Methods on the Microstructure and Properties of Sr-Fe-Co Oxides

作者: 董贤平 , 李青 , 黄向红 , 裴立宅 , 陈群 , 张千峰 :;

关键词: SrFexCo0.5O3–δ Oxides Citrate Method Solid State Reaction Iron ContentsSrFexCo0.5O3–δ氧化物柠檬酸法固态反应法铁含量

摘要: 本文采用柠檬酸盐法(CM)和固态反应法(SSR)合成SrFexCo0.5O3–δ(SFC),XRD结果表明,粉末的相态与铁含量有关,随着铁含量增加,SFC由钙钛矿型结构为主转为钙铁矿型结构为主。SEM分析显示,所得粉体颗粒形态结构相似,大小均匀。热重–差热(TGA/DSC)分析表明,粉末组成的损失和相变与合成方法密切相关,CM法合成的粉体相对于SSR法合成的粉体各组分的质量损失更多,同时,合成方法的不同也对SFC粉末吸收氧气的能力有很大影响。

Abstract: The SrFexCo0.5O3–δ (SFC) oxides synthesized by the citrate method (CM) and solid state reaction (SSR) are analyzed in the paper. XRD results reveal that the phases of the SFC powders are dependent on the content of Fe. With the increase of iron content, the structure of SFC changed from perovskite to brownmil-lerite. SEM images show that the obtained powders have similar morphology with particle structure and uni-form size distribution. The composition loss and phase transition of the powders are related to the synthetic methods by the thermal gravity-gravimetric analysis and differential scanning calorimeters (TGA/DSC) analysis of the SFC powders. The SFC powders synthesized by CM method show a more weight loss of var-ious compositions than that synthesized by SSR method. And the synthetic method plays an important role on the oxygen absorption capacity of the SFC powders.

文章引用: 董贤平 , 李青 , 黄向红 , 裴立宅 , 陈群 , 张千峰 (2011) 铁含量及合成方法对Sr-Fe-Co氧化物微结构和性能的影响。 材料科学, 1, 93-100. doi: 10.12677/ms.2011.13017

参考文献

[1] Y. Teraoka, H. M. Zhang and N. Yamazoe. Oxygen-sorptive pr- opertiesof defect perovskite-type La1–xSrxCo1–yFeyO3–δ. Chemistry Letters, 1985, 12(9): 1367.

[2] B. Ma, U. Balachandra. Oxygen nonstoichiometry in mixed conducting SrFeCo0.5Ox. Solid State Ionics, 1997, 100(1-2): 53- 62

[3] J. Hu, H. S. Hao, C. P. Chen, et al. Thermogravimetric study on perovskite-like oxygen permeation ceramic membranes. Journal of Membrane Science, 2006, 280(1-2): 809-814.

[4] Q. H. Yin, J. Kniep and Y. S. Lin. Oxygen sorption and desorption properties of Sr-Co-Fe oxide. Chemical Engineering Science, 2008, 63(8): 2211-2218.

[5] W. Liu, G. G. Zhang, S. Xie, C. S. Chen, et al. Electrical co- nduction and oxygen transport in SrFeCo0.5Ox oxide membranes. Solid State Ionics, 2000, 135(1-4): 727-730.

[6] Z. H. Yang, Y. S. Lin and Y. Zeng. High-temperature sorption process for air separation and oxygen removal. Industrial and Engineering Chemistry Research, 2002, 41(11): 2775-2784.

[7] Q. Yang, Y. S. Lin. Fixed-bed performance for production of oxygen enriched carbon dioxide stream by perovskite-type ceramicsorbent. Separation and Purification Technology, 2006, 49(1): 27-35.

[8] U. Balachandran, J. T. Duse, R. L. Mieville, et al. Dense ceramic membranes for partial oxidation of methane to syngas. Applied Catalysis A: General, 1995, 133(7): 19-29.

[9] Y. Zeng, Y. S. Lin and S. L. Swartz. Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of Membrane Science, 1998, 150(1): 87-98.

[10] J. Liu, A. C. Co, V. I. Birss and S. Paulson. Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8-Fe0.2O3 cathodes. Solid State Ionics, 2006, 177(3-4): 377-387.

[11] X. Qi, Y. S. Lin and S. L Swartz. Electrical tranport and oxygen permeation properties of lantanum cobaltite membranes syn- thesized by different methods. Industrial and Engineering Chemistry Research, 2000, 39(3): 646-653.

[12] K. Zhang, Y. L. Yang, D. Ponnusamy, et al. Effect of microstructure on oxygen permeation in SrCo0.8Fe0.2O3–δ. Journal of Materials Science, 1999, 34(6): 1367-1372.

[13] Y. Teraoka, H. Shimokawa, C. Y. Kang, et al. Fe-based perovskite-type oxides as excellent oxygen-permeable and reduction-tolerant materials. Solid State Ionics, 2006, 177(32): 2245-2248.

[14] C. Y. Tsai, A. G. Dixon, W. R Moser, et al. Dense perovskite membrane reactors for partial oxidation of methane to syngas. American Institute of Chemical Engineers Journal, 1997, 43(11A): 2741-2750.

[15] Y. Teraoka, M. Yashimatsu, N. Yama-zoe, et al. Oxygen-sorptive properties and defect structure of perovskite-type oxides. Chemistry Letters, 1984, 13(6): 893-896.

[16] Z. H. Yang, L. S. Lin. Synergetic thermal effects for oxygen sorption and order-disorder transition on perovskite-type oxides. Solid State Ionics, 2005, 176(1-2): 89-96.

[17] Y. Zeng, Y. S. Lin. Synthesis and properties of copper and samarium doped yttria-bismuth oxide powders and membranes. Journal of Materials Science, 2001, 36(5): 1271-1276.

[18] Q. H. Yin, Y. S. Lin. Beneficial effect of order-disorder phase transition on oxygen sorption properties of perovskite-type oxides. Solid State Ionics, 2007, 178(1-2): 83-89.

[19] B. Ma, U. Balachandran, J. H. Park, et al. Electrical transport properties and defect structure of SrFeCo0.5Ox. Journal of the Electrochemical Society, 1996, 143(5): 1736-1744.

[20] W. Q. Jin, S. G. Li, P. Huang, et al. Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas. Journal of Membrane Science, 2000, 166(14): 13-22.

分享
Top