﻿ 用小型蒸发量估算E-601B型蒸发量研究

# 用小型蒸发量估算E-601B型蒸发量研究Estimation of E-601B Evaporation by Small Evaporation

Abstract: In order to prolong the use value of historical data series of small evaporation at single station, the evaporation of E-601B evaporator was estimated by using linear regression method of small evaporation and multiple linear regression method of climatic factors such as temperature, humidity and sunshine hours based on 4-year parallel observation data at Sheyang Station. The experimental results show that the errors of the two methods are equivalent: the annual relative error of the former is −1.4% to +2.6%, and the annual relative error of the latter is −0.9% to +1.6%. Because some factors in the multivariate equation of some months cannot pass the 0.1 level significance test, it shows that the reliability of the simulation of E-601B evaporation is doubtful, which may increase the annual synthetic error and make the calculation complicated. It is not recommended to use this method to convert the E-601B evaporation data.

1. 引言

2. 资料处理和方法

3. E-601B型蒸发量转换方法及检验评估

3.1. 用折算系数订正

$K＝Y/X$ (1)

3.2. 用小型蒸发量线性回归估算

$Y=0.578X+3.9$ (2)

Table 1. Seasonal unary linear regression model of evaporation in Sheyang station from 1998 to 2001

Table 2. Analysis of monthly error of monthly evaporation in Sheyang station from 1998 to 2001 by seasonal regression results

Table 3. Analysis on the annual error of seasonal regression results of monthly evaporation in Sheyang station from 1998 to 2001

3.3. 气候因子参与线性回归估算

$K=3.445%{T}_{X}-5.662%$

Table 4. Estimation error of annual conversion coefficient of E-601B evaporation in Sheyang station from 1998 to 2001 by mean maximum temperature regression

$Y={A}_{0}+{A}_{1}X1+{A}_{2}X2+{A}_{3}X3+{A}_{4}X4+{A}_{5}X5+{A}_{6}X6+{A}_{7}X7$

Table 5. Multiple linear regression model of E-601B evaporator evaporation in Sheyang station from 1998 to 2001

3.4. 三种换算方法检验评估

Table 6. Estimating the relative error of E-601B monthly evaporation in Sheyang station from 1998 to 2001 by simulated equation

Table 7. Estimating the relative error of E-601B annual evaporation in Sheyang station from 1998 to 2001 by simulated equation

4. 结论

1) 月蒸发量转换方法评估：使用小型蒸发回归估算E-601B型蒸发量相对误差−10%到+15%；若强置截距为零，计算得出射阳站年折算系数0.613，使用折算系数订正E-601B型蒸发量相对误差−10%到+6%；使用多气候要素回归估算E-601B型蒸发量相对误差−9%到+10%。三种方法估算误差相当，但折算系数订正方法由于经过气候平均，只适用订正各月平均蒸发量；若需要估算特定年份的某月蒸发量建议使用小型蒸发单回归；多气候要素回归方法不仅计算繁杂，而且其极端最高温度或饱和差因子未能通过多元回归方程的0.1水平的显著性检验，导致相关月份模拟值可靠性存疑，应用上应避免。

2) 年蒸发量转换方法评估：使用小型蒸发回归估算E-601B型年蒸发量相对误差−1.4%到+2.5%；使用多气候要素回归估算E-601B型蒸发量相对误差−0.9%到+1.6%；使用折算系数订正E-601B型蒸发量相对误差−0.9%到+1.2%；若折算系数先经年平均最高温度因子线性回归，再订正年蒸发量，相对误差在0.3%以内。四种方法估算误差均符合应用要求。因此，建议使用折算系数订正方法转换年平均蒸发量，用小型蒸发回归方法估算特定年份的蒸发量，而多气候要素回归方法因月蒸发量模拟不够可靠，可能带来较大的年合成误差。

3) 关于折算系数先经年平均最高温度单因子线性回归再订正特定年份蒸发量，在用临近站4年气象资料检验时，仅是敏感因子之一，代表性不强，射阳站误差小可能存在4年小样本的偶然因素。

NOTES

*第一作者。

[1] 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003: 64-66.

[2] 世界气象组织仪器和观测方法委员会. 气象仪器和观测方法指南(WMO手册中文版) [M]. 第6版. 北京: 气象出版社, 2006: 204-205.

[3] 张有芷. 我国水面蒸发实验研究概况[J]. 人民长江, 1999, 30(3): 6-8.

[4] 刘小宁, 王淑清, 吴增祥, 等. 我国两种蒸发观测资料的对比分析[J]. 应用气象学报, 1998, 9(3): 321-328.

[5] 任芝花, 黎明琴, 张纬敏. 小型蒸发器对E-601B 蒸发器的折算系数[J]. 应用气象学报报, 2002, 13(4): 508-512.

[6] 盛琼, 申双和, 顾泽. 小型蒸发器的水面蒸发量折算系数[J]. 南京气象学院学报, 2007, 30(4): 561-565.

[7] 刘红霞, 王飞. E-601B型蒸发器与小型蒸发器测值对比分析[J]. 气象科技, 2013, 41(5): 852-856.

[8] 张霭琛. 现代气象观测[M]. 北京: 北京大学出版社, 2015: 137-138.

[9] 杨永胜, 赵琪, 闫斌, 等. E-601型蒸发器与Φ20 cm蒸发皿观测资料的相关分析[J]. 水文, 2003, 23(5): 42-44.

[10] 黄秋红. E601型与小型蒸发器对比观测分析[J]. 气象, 2000, 26(10): 45-48.

[11] 庞成, 马鸿勇, 王伏村, 郑学金. 张掖E601型与小型蒸发观测资料对比[J]. 干旱气象, 2011, 29(3): 362-367.

[12] 褚荣浩, 申双, 李萌沙, 等. 小型与E-601型蒸发皿蒸发量对比分析及其折算系数——以江苏省为例[J]. 气象科学, 2018, 38(2): 247-257.

Top