﻿ 一种改进的单轴旋转式惯导系统转位方案设计

# 一种改进的单轴旋转式惯导系统转位方案设计A Modified Scheme Design of a Single-AxisRotating Inertial Navigation System

Abstract: Using the periodic rotation of inertial measurement unit to compensate the drift of optical gyros-cope automatically is one of the effective ways to realize the high accuracy and long-distance na-vigation of strapdown inertial navigation system. This paper expounds the error effect of the sin-gle-axis rotary inertial navigation system, analyses the key factors of its design, and aims at the constant drift of the traditional four-position single-axis rotation in the horizontal direction under static conditions. A modified four-position single-axis rotation direction is proposed to eliminate the incomplete errors. The navigation errors (position and attitude error) of the INS are compared by computer before and after self-compensation. The results show that the static errors of inertial compents can be overcome by using rotation self-compensation technology and the accuracy of position and attitude is improved greatly by modified four-position rotation scheme.

1. 引言

2. 单轴旋转式捷联惯导系统的误差效应

2.1. 常值误差效应

2.2. 标度因数误差效应

2.3. 随机误差效应

3. 单轴旋转方案设计

3.1. 单轴旋转系统转轴的选取

3.2. 旋转速度的选取

3.3. 旋转周期的确定

3.4. 旋转运动方式的选择

4. 单轴正反旋转方案设计

4.1. 传统的四位置单轴转位方案

(1) 次序1、2 (2) 次序3、4

Figure 1. Order of IMU four position with rotary angle less than 360 degrees

4.2. 改进的四位置单轴转位方案分析

$\int {\epsilon }_{E}^{n}\cdot \text{d}t=\sqrt{2{\epsilon }_{1}}\left(2/\omega +{T}_{s}-{{T}^{\prime }}_{s}\right)$ (3-1)

$\int {\epsilon }_{N}^{n}\cdot \text{d}t=\sqrt{2{\epsilon }_{2}}\left(2/\omega +{T}_{s}-{{T}^{\prime }}_{s}\right)$ (3-2)

${\epsilon }_{1}$${\epsilon }_{2}$ ——水平方向陀螺的常值漂移。

5. 仿真分析

1) 载体处于静止状态，三个陀螺的漂移均为0.02˚/h，加速度计零偏选为0.0001 g，忽略其他误差因素的影响。

2) 采用的调制方式是单轴持续正反转调制方式，调制角速度选为6˚/s。

3) 仿真时间均为72小时。

Figure 2. Navigation errors of single-axis rotation system under static conditions

Figure 4. Navigation errors in improved four-position single-axis rotation system

6. 结论

[1] Banerjee, K., Dam, B., Majumdar, K., et al. (2004) An Improved Dither-Stripping Scheme for Strapdown Ring Laser Gy-roscopes. IEEE Transactions on Aerospace and Electronic Systems, 7, 54-59.

[2] Zha, F., Xu, J.-N. and Qin, F.-J. (2010) Error Analysis for SINS with Different IMU Rotation Scheme. 2nd International Asia Conference on Informatics in Control, Automation and Robotics, Wuhan, 6-7 March 2010, 59-63.

[3] 袁保伦, 饶谷音, 廖丹. 旋转式惯导系统的标度因数误差效应分析[J]. 中国惯性技术学报, 2010, 18(2): 160-164.

[4] 于旭东, 王宇, 张鹏飞, 等. 单轴旋转对惯导系统误差特性的影响补偿[J]. 中国惯性技术学报, 2008, 16(6): 551-555.

[5] 孙枫, 孙伟. 旋转自补偿捷联惯导系统技术研究[J]. 系统工程与电子技术, 2010, 32(1): 122-125.

[6] 龙兴武, 于旭东, 张鹏飞, 等. 激光陀螺单轴旋转惯性导航系统[J]. 中国惯性技术学报, 2010, 18(2): 149-153.

[7] 翁海娜, 陆全聪, 黄昆. 旋转式光学陀螺捷联惯导系统的旋转方案设计[J]. 中国惯性技术学报, 2009, 17(1): 8-14.

[8] 李仁, 陈希军, 曾庆双. 旋转式捷联惯导系统误差分析[J]. 哈尔滨工业大学学报, 2010, 42(3): 368-371.

[9] 伊国兴, 谢阳光, 王常虹, 赵洪亮. 一种新的旋转调制捷联惯导系统[J]. 中国惯性技术学报, 2011, 19(3): 261-266.

[10] 王宇, 汤建勋, 张鹏飞, 等. 一种提高激光陀螺惯导系统精度的方法[J]. 光学技术, 2009, 35(3): 467-470.

Top