﻿ 准二级低温热泵机组与普通热泵机组的性能比较

# 准二级低温热泵机组与普通热泵机组的性能比较Performance Comparison between Quasi-Secondary Compression Heat Pump System and Single Stage Compression Heat Pump System

Abstract: The air source heat pump uses air as a low-level heat source, which has the advantages of conven-ient heat extraction, energy saving and environmental protection. However, when the air source heat pump is applied in the northern region, there are problems such as a decrease in heating performance at a low temperature. This paper mainly describes the low temperature characteris-tics of air source heat pump and quasi-secondary compression technology, and compares the heating performance of quasi-secondary compression heat pump system and single stage com-pression heat pump system in winter. The results show that the performance of the qua-si-secondary compression heat pump system is better than that of the single-stage compression heat pump system when the ambient temperature is lower than −4.78˚C.

1. 引言

2. 空气源热泵低温运行特性分析

Figure 1. Common heat pump working principle pressure map

$COP=\frac{{T}_{1}}{{T}_{1}-{T}_{0}}$ (1)

$COP=\frac{{T}_{1}}{{T}_{1}-{T}_{0}}$ (2)

$\lambda ={\lambda }_{\nu }\cdot {\lambda }_{p}\cdot \lambda {}_{T}\cdot {\lambda }_{D}$ (3)

3. 准二级压缩式热泵技术

Figure 2. Jet booster heat pump system with econimizer

4. 两种热泵机组的测试研究及测试结果分析

4.1. 两种机组的测试研究

Figure 3. Air source heat pump system flow chart

4.2. 测试结果分析

4.2.1. 机组制热量随环境温度的变化

Figure 4. The coefficient of heat generation of the unit with the ambient temperature

4.2.2. 机组耗功随环境温度的变化

Figure 5. The curve of unit power consumption with ambient temperature

4.2.3. 机组COP随环境温度的变化

Figure 6. The curve of unit COP with ambient temperature

5. 结论

1) 普通空气源热泵在冷凝温度不变的情况下，随着蒸发温度的下降，机组制热性下降，压缩机内制冷剂的质量流量减少，蒸发压力降低，压缩机的压缩比增大，造成排气温度过高，压缩机高温保护程序频繁启停，不仅导致机组制热量大幅下降，而且会对压缩机造成机械损害；

2) 准二级低温热泵机组通过中间补气的喷气增焓技术，以单台压缩机实现两级压缩，节省投资和运行费用，性价比较高；

3) 准二级低温热泵机组和普通热泵机组的制热量和耗功均随环境温度的下降而下降，但在相同的环境温度下，准二级低温热泵机组的制热量和耗功均大于普通热泵机组；

4) 准二级低温热泵机组和普通热泵机组的COP随环境温度的下降而下降，但当环境温度小于−4.78℃时，准二级低温热泵机组的性能优于普通热泵机组。

[1] Urge-Vorsatz, D., Cabeza, L.F., Serrano, S., Barreneche, C. and Petrichenko, K. (2015) Heating and Cooling Energy Trends and Drivers in Buildings. Renewable and Sustainable Energy Reviews, 41, 85-98.
https://doi.org/10.1016/j.rser.2014.08.039

[2] Urge-Vorsatz, D., Petrichenko, K., Staniec, M. and Eom, J. (2013) Energy Use in Buildings in a Long-Term Perspective. Current Opinion in Environmental Sustainability, 5, 141-151.
https://doi.org/10.1016/j.cosust.2013.05.004

[3] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2018 [M]. 北京: 北京工业出版社, 2018.

[4] 陈汝东. 制冷技术与应用[M]. 上海: 同济大学出版社, 2006.

[5] Xu, D., Qi, T. and Zhen, L. (2017) Energy and Exergy Analysis of Solar Integrated Air Source Heat Pump for Radiant Floor Heating without Water. Energy & Buildings, 142, 128-138.

[6] 张超, 吕新刚, 陈建平, 张亚伟, 乔婧. 低环温空气源热泵技术研究新进展[J]. 建筑节能, 2015, 43(10): 22-26.

[7] 罗鸣, 谢军龙, 沈国民. 风冷热泵冷热水机组除霜研究[J]. 建筑热能通风空调, 2002(21): 15-17.

[8] Yang, D., Lee, K. and Song, S. (2006) Modeling for Predicting Frosting Behavior of a Fin-Tube Heat Exchanger. International Journal of Heat and Mass Transfer, 49, 1472-1479.
https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.022

[9] 马最良, 姚杨, 姜益强. 热泵技术应用理论基础与实践[M]. 北京: 中国工业出版社, 2010.

[10] 李艳. 空气源热泵机组低温运行特性研究[D]: [硕士学位论文]. 济南: 山东建筑大学, 2011.

[11] 王伟, 马最良, 姚杨. 空气源热泵机组新型低温运行工况稳态特性研究[J]. 建筑科学, 2007, 23(10): 28-31.

[12] 李春艳, 马广兴, 梁春阳. 严寒地区喷气增焓空气源热泵供暖系统实验研究[J]. 内蒙古农业大学学报(自然科学版), 2017, 38(4): 39-44.

[13] Zhang, L., Jiang, Y.Q., Dong, J.K. and Yao, Y. (2018) Advances in Vapor Compression Air Source Heat Pump System in Cold Regions: A Review. Renewable and Sustain-able Energy Reviews, 81, 353-365.
https://doi.org/10.1016/j.rser.2017.08.009

[14] 胡青松, 吴玉庭, 马重芳. 适合严寒地区的先进热泵采暖技术[J]. 建设科技, 2016(2): 21-24.

Top