基于离散Morse方法的分类规则研究
Classification Rules Based on Discrete Morse Theory

作者: 战玉彩 * , 刘希玉 :山东师范大学管理科学与工程学院;

关键词: 离散Morse函数离散梯度向量域分类规则Discrete Morse Function Discrete Gradient Vector Field Classification Rules

摘要: 随着离散Morse方法的出现和发展,其应用也越来越广泛,主要领域有拓扑学、计算机图形学和几何建模等。分类规则挖掘则是通过对训练样本数据集的学习构造分类规则的过程,是数据挖掘、知识发现的一个重要方面。分类规则挖掘的实质是希望得到高准确性、有趣的和易于理解的分类规则。本文利用离散Morse方法构造分类器,从大量数据中选出人们感兴趣的有用信息。首先综述了数据挖掘和离散Morse方法的相关理论知识,描述了Hasse图、离散梯度向量域和离散Morse函数三者之间的关系,并介绍了构建离散梯度向量域和离散Morse函数的算法。最后针对分类的挖掘问题,构造了关于分类规则的单纯复形,并利用离散Morse方法分析解决了关于分类规则的问题,并通过例证表明了该方法的可行性和高效性。

Abstract: With the emergence and development of discrete Morse theory, it has been widely applied, such as Topology, Computer Graphics and geometric modeling. Classification mining is the process of learning through the training sample data set to construct classification rules, and is an important aspect of data mining, knowledge discovery. The essence of the classification mining is to get high accuracy, interesting and easy to understand classification rules. In this paper, discrete Morse Theory is used to construct classifier, Purpose is to elect the useful information which people interested in from large amounts of data. First we summarizes the relevant theoretical knowledge about data mining and discrete Morse theory, describes the relationship between the Hasse diagram, discrete gradient vector field and discrete Morse function, and describes the algorithm to build a discrete gradient vector field and discrete Morse function. Finally, for the problem of classification mining, we construct the simplicial complex about the classification rules, use the discrete Morse theory to solve the problem of classification rules, and show the feasibility and efficiency of the method through the example.

文章引用: 战玉彩 , 刘希玉 (2012) 基于离散Morse方法的分类规则研究。 管理科学与工程, 1, 24-28. doi: 10.12677/MSE.2012.13004

参考文献

[1] U. Fayyad,G. P. Shapiro and P. Smyth. Knowledge discovery and data mining: Towards a unifying framework. In: Proceed- ings of the Sec-ond International Conference on Knowledge Dis- covery and Data Mining, Portland: AAAI Press, 1996: 82-88.

[2] R. Ayala, L. M. Femandez and J. A. Vilches. Defining discrete Morse functions on infinite surfaces. Universidad de Sevilla, (Spain), 2004: 1-3.

[3] R. Forman. Morse theory for cell complexes. Advances in Ma- thematics, 1998, 134: 90-145.

[4] 张丽娜, 顾耀林. 一种基于离散梯度向量域的可视化应用研究[J]. 计算机工程, 2006, 32(16): 218-220.

[5] 刘俊, 刘希玉. 基于广义离散Morse理论的强关联规则挖掘[J]. 计算机工程, 2011, 37(16): 45-47.

[6] T. Lewiner. Constructing discrete Morse functions. MS Thesis, 2002, 6(6): 33-64.

[7] T. Lewiner,H. Lopes and G. Tavares. Towards optimality in discrete Morse theory. MS Thesis, 2002, 11(2): 1-13.

[8] 张帆. 浅析分类规则挖掘[J]. 科教导刊, 2009, (36).

[9] 蒋良孝, 蔡之华, 刘钊. 一种基于信息增益的分类规则挖掘算法[J]. 中南工业大学学报(自然科学版), 2003, 34(Z1): 69-71.

[10] 韩家炜, 堪博著作; 范明, 孟小峰译. 数据挖掘——概念与技术[M]. 北京: 机械工业出版社, 2007: 3.

分享
Top