两个转抗真菌基因水稻根部内生真菌群落变化的分析
Analysis of Endophytic Fungal Community from Roots of Two Transgenic Rice

作者: 刘月廉 , 郭建夫 , 李 伟 , 黄永相 :广东海洋大学农学院; 袁红旭 :湛江师范学院生命科学与技术学院; 李玥仁 :福建省农业科学院;

关键词: 转基因水稻抗真菌基因内生真菌Transgenic Rice Antifungal Genes Endophytic Fungi

摘要: 本文采用真菌分离培养法和直接染色观测法分析了两个转基因根内真菌群落变化。分离培养法表明,与非转基因水稻相比,不同生长期两个转基因水稻的内生真菌分离频率和多样性与对照无显著差异。Gaeumannomyces为水稻根部内生真菌优势种群,优势度达23.23%,在转基因的两个品种和对照均可分离到,在不同的生长期也分离到。染色观测法表明,转基因水稻的内生真菌侵染率在秧苗期与对照有显著性差异,表现在它们的侵染率分别低于对照21.25%26.56%,但在分蘖期和成熟期均无显著性差异。因此推论,水稻转该基因后,对水稻根生内真菌群落无显著影响。

Abstract: Endophytic fungal community in roots of two transgenic rice (antifungal genes) was studied by isolation and staining observation. Compared with non-transgenic rice, the isolation frequency and diversity of the endophytic fungi from two transgenic rice in different growth stages exhibited no significant differences in contrast with the control. Gaeumannomyces was the dominant population of endophytic fungi in the roots of rice with the dominance of 23.23%, and could be isolated in either the two transgenic rice or the control, and any growth stages. By staining observation, the infection rates of endophytic fungi in seedlings of transgenic rice were significantly lower than the control by 21.25% and 26.56% respectively, but there were no significant differences in tillering and maturity. Therefore, it is inferred that the transgenic rice had no significant effect on fungal communities in rice roots.

文章引用: 刘月廉 , 郭建夫 , 袁红旭 , 李玥仁 , 李 伟 , 黄永相 (2012) 两个转抗真菌基因水稻根部内生真菌群落变化的分析。 生物过程, 2, 105-110. doi: 10.12677/BP.2012.23017

参考文献

[1] 李宝健, 朱华晨. 论应用多基因转化策略综合改良生物体遗传性研究方向的前景Ⅱ. 多基因转化策略中的规律、前景和问题[J]. 中山大学学报(自然科学版), 2005, 44: 79-83.

[2] Z. Jiao, X. Si, G. Li, Z. Zhang and X. Xu. Unintended composi- tional changes in transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled with chemo- metrics methods. Journal of Agricultural and Food Chemistry, 2010, 58: 1746-1754.

[3] 袁红旭, 张建中, 郭建夫等. 种植转双价抗真菌基因水稻对根际微生物群落及酶活性的影响[J]. 土壤学报, 2005, 42(1): 122-126.

[4] C. Gimenez, R. Cabrera, M. Reina, et al. Fungal endophytes and their role in plant protection. Current Organic Chemistry, 2007, 11: 707-720.

[5] V. M. Reis, J. I. Baldani and V. L. D. Baldani. Biological dini- trogen fixation in Gramineae and palm trees. Critical Reviews in Plant Sciences, 2000, 19: 227-247.

[6] M. Stinson, D. Ezra and W. M. Hess. An endophytic Gliocla- dium sp. of Eucryphia cordifolia producing selective volatile an- timicrobial compounds. Plant Science, 2003, 165(4): 913-922.

[7] 杨毓峰, 袁红旭, 刘月廉, 许新萍, 李宝健. 转几丁质酶基因水稻根系微生物群落分析[J]. 中国生态农业学报, 2002, 10(2): 29-31.

[8] 田新莉, 蔡爱群, 曹理想等. 水稻内生真菌类群分析及其颉抗病原菌活性研究[J]. 中山大学学报(自然科学版), 2005, 44(2): 70-73.

[9] K. H. Domsch, W. Gams and T. H. Anderson. Compendium of soil fungi. 2nd Edition, Eching: IHW-Verlag, 2007: 1-672.

[10] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1982.

[11] P. M. Kirk, P. F. Cannon, D. W. Minter and J. A. Stalpers. Ains- worth & Bisby’s dictionary of the fungi. 10th Edition, Wallingford: CAB International, 2008: 1-771.

[12] T. White, T. Bruns, S. Lee and J. Taylor. Amplification and di- rect sequencing of fungal ribosomal RNA genes for phylogenet- ics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, Eds., PCR Protocols, a Guide to Methods and Applications. San Diego: Academic Press, 1990: 315-322.

[13] 唐启义. DPS数据处理系统——实验设计、统计分析及模型优化[M]. 北京: 科学出版社, 2006: 442-444.

[14] 柯志新, 黄良民, 谭烨辉, 尹健强. 2007年夏季南海北部浮游植物的物种组成及丰度分布[J]. 热带海洋学报, 2011, 30(1): 131-143.

[15] 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985: 4.

[16] 郭绍霞, 孟祥霞, 张玉刚, 王莲英. 牡丹AM菌根菌自然侵染率的调查[J]. 中国农学通报, 2003, 19(3): 77-78.

[17] 马丽莲, 郭龙彪, 钱前. 转基因水稻安全性评价的内容[J]. 中国稻米, 2004, 5: 48-49.

[18] 贺晓云, 黄昆仑, 秦伟等. 转基因水稻食用安全性评价国内外概况[J]. 食品科学, 2008, 12: 760-765.

[19] 李本金, 李仁, 胡奇勇等. 抗真菌转基因水稻对根际土壤微生物群落的影响[J]. 福建农林大学学报(自然科学版), 2006, 35(3): 319-323.

[20] H. F. Qian, B. L. Hu, D. Cao and W. Chen. Bio-safety assess- ment of validamycin formulation on bacterial and fungal bio- mass in soil monitored by real-time PCR. Bulletin of Environ- mental Contamination and Toxicology, 2007, 78: 239-244.

分享
Top