﻿ 一维双基线相位干涉测向公式的准确解

# 一维双基线相位干涉测向公式的准确解 Accurate Solution of DF Formula for Phase Interference with One-Dimensional Double Baseline

Abstract:

Abstract:

Abstract:

Abstract:

Abstract: On the basis of the phase-differential locating equation obtained by the correspondence relationship between radial distance and phase, applying the trigonometric equation obtained by cosine law, the set of linear equation solving the target position can be obtained only by simple mathematical manipulation. Now, the location parameter of target can be solved and the accurate DF formula can be derived for the phase interference array with double baseline in one-di- mensional space. The verification for accurate solution and analysis for measuring error can be worked out by using the equivalence between path length difference and phase difference. But also, the analysis process is not related to the integer of wavelength and phase-differential measurement of discriminator. The study in this paper provides a theoretical basis for the correction of the measurement accuracy to the existing approximate solution obtained by the assumption of parallel incident wave.

[1] 卢佳林. 无线电测向技术及应用[J]. 潍坊学院学报, 2005, 5(4): 65-67.

[2] 吴红光. 二维相位干涉仪原理及其在短波战术测向机中的应用[J]. 通信对抗, 2003, (2): 25-35.

[3] 刘宗敏. 数字测向和单站无源定位理论研究[D]. 南京: 南京航空航天大学, 2007.

[4] 赵国庆. 雷达对抗原理[M]. 西安: 西安电子科技大学出版社, 1999.

[5] H. Messer, G. Singal. On the achievable DF accuracy of two kinds of active interferometers. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1158-1164.

[6] 许耀伟, 孙仲康. 利用相位固定辐射源无源被动定位[J]. 系统工程与电子技术, 1999, 21(3): 34-37.

[7] 苗留成, 冯志远, 胡海滨等. 固定辐射源的干涉测向定位精度分析[J]. 航天电子对抗, 2009, 25(5): 36-38, 46.

[8] 田德民. 影响干涉仪测向接收机测向精度的因素分析[J]. 舰船电子对抗, 2010, 33(2): 45-48.

[9] 李聪聪, 刘国玺, 毛贵海. 结构变形对测向天线精度的影响[J]. 无线电通信技术, 2010, 36(1): 35-36.

[10] 方洪俊. 测向精度试验中测向距离的选择方法[J]. 电子对抗技术, 2001, 16(2): 31-37.

Top