基于图像内容的物品推荐
Product Recommendation Based on Image Content

作者: 夏利民 , 彭东亮 , 张 伟 :中南大学信息科学与工程学院,长沙;

关键词: 图像内容推荐方法图像相似度相似用户相似物品 Image Content Recommendation Method Image Similarity Similar Users Similar Items

摘要:

针对物品推荐技术中存在的目标用户和相似用户均未标记的物品无法预测以及未考虑用户已购买情况等问题,提出了一种基于图像内容的物品推荐方法。该方法提取物品图像的颜色、形状和纹理特征来表示物品,通过图像内容间的相似性和用户相似性完成了对目标用户未标记物品兴趣度的预测,并引入用户兴趣度因子来反映用户已购买的情况对用户兴趣的影响,最终根据用户购买项目的静态特征给出推荐结果。在自建的物品图像数据集上,用文中方法与基于用户的协同过滤技术、基于项目的协同过滤技术以及two-way三种方法进行对比试验,实验结果表明,该方法具有良好的物品推荐品质。

Abstract: The technology used to recommend products suffers from the problems such as inability to recommend products unrated by neither target user nor his similar users and ignoring the previous consumptions of users. To address the problems mentioned above, a new recommendation method based on image content is proposed. This recommendation method describes the product by the color, shape and textual of product images, and is able to recommend new products and the products unrated by target user and his similar users by considering the similarities of images and users, and reflects the impact on user’s interest by user’s consumption. Finally, the system gives the recommendation result based on the static feature of the items bought by users. We test our algorithm on an image dataset built by ourselves. The experimental results show that the new method has better capacity for recommendation compared to user-based collaborative filtering, item-based collaborative filtering and two-way method.

文章引用: 夏利民 , 彭东亮 , 张 伟 (2012) 基于图像内容的物品推荐。 软件工程与应用, 1, 1-6. doi: 10.12677/sea.2012.11001

参考文献

[1] H.-N. Kim, A.-T. Ji, I. Ha and G.-S. Jo. Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation. Electronic Commerce Research and Applications, 2010, 9(1): 73-83.

[2] J.-S. Lee, S. Olafsson. Two-way cooperative prediction for col- laborative filtering recommendations. Expert Systems with Ap- plications, 2009, 36(3): 553-561.

[3] K. Wang, Y. Tan. A new collaborative filtering recommendation approach based on naive Bayesian method. Lecture Notes in Computer Science, 2011, 6729: 218-227.

[4] Y. W. Wang, S. H. Wang, N. Stash, L. Aroyo and G. Schreiber. Enhancing content-based recommendation with the task model of classification. Lecture Notes in Computer Science, 2010, 6317: 431-440.

[5] S. A. Alvarez, C. Ruiz, T. Kawato and W. Kogel. Neural expert networks for faster combined col-laborative and content-based recommendation. Journal of Computational Methods in Sciences and Engineering, 2011, 11(4): 161-172.

[6] L. Yu, L. Liu and X. F. Li. A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in e-commerce. Expert Systems with Applications, 2005, 28(1): 67-77.

[7] L. M. de Campos, J. M. Fernández-Luna and J. F. Huete. Com- bining content-based and collaborative recommendations: A hy- brid approach based on Bayesian networks. International Journal of Approximate Reasoning, 2010, 51(7): 785-799.

[8] A. Albadvi, M. Shahbazi. A hybrid recommendation technique based on product category attributes. Expert Systems with Applications, 2009, 36(9): 11480-11488.

[9] M. E. H. Creusen, J. P. L. Schoormans. The different roles of product appearance in consumer choice. Journal of Product In- novation Management, 2005, 22(1): 63-81.

[10] A. M. Fiore, S. E. Lee and G. Kunz. Individual differences, motivations, and willingness to use a mass customization option for fashion products. European Journal of Marketing, 2004, 38(7): 835-849.

[11] P. G. Ricardo. Consumer behavior: Product characteristics and quality perception. Technical Report 11142, University Library of Munich, 2008.

[12] M. E. H. Creusen, J. P. L. Schoormans. The different roles of product appearance in consumer choice. The Journal of Product Innovation Management, 2005, 22(1): 63-81.

[13] J. Huang, S. R. Kumar, M. Mitra, W. J. Zhu and R. Zabih. Image indexing using color correlograms. Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition (CVPR), 17-19 June 1997: 762-768.

[14] M.-K. Hu. Visual pattern recognition by moment invariants. IEEE Transactions Information Theory, 1962, 57(8): 179-187.

[15] R. M. Haralick, K. Shanmugam. Its’hak Dinstein. Textual fea- tures for image classification. IEEE Trans on Systems, Man, and Cybernetics, 1973, 3(6): 610-621.

[16] Y. Liu, D. S. Zhang, G. J. Lu and W.-Y. Ma. A survey of con- tent-based image retrieval with high-level semantics. Pattern Recognition, 2007, 40(1): 262-282.

[17] F. G. Zhang. Research on recommendation list diversity of recommender systems. Nanchang: International Conference on Management of E-Commerce and E-Government, 2008: 72-76.

分享
Top