黄河三角洲不同类型盐碱地CO2、CH4和N2O通量特征
Dynamics of CH4, CO2 and N2O Fluxes in Saline-Alkaline Soils of the Yellow River Delta, China

作者: 聂园园 :中国农业大学(烟台)理工学院; 裴 悦 * , 张立华 * , 张俪文 :中国科学院烟台海岸带研究所中国科学院海岸带环境过程重点实验室; 邵宏波 :青岛科技大学生命科学研究所;

关键词: 温室气体CO2CH4N2O盐碱地黄河三角洲Greenhouse Gas Carbon Dioxide Methane Nitrous Oxide Saline-Alkaline Soils Yellow River Delta

摘要: 盐碱地作为陆地的重要组成部分,在温室气体排放中的作用不可忽视。为探究滨海盐碱地温室气体排放通量,本研究于201110月运用静态暗箱气相色谱法对黄河三角洲不同类型盐碱地CO2CH4N2O日通量进行了原位观测。结果表明,不同植被覆盖与大气界面的CO2CH4N2O通量存在明显差异。CO2日排放通量:柽柳群落 > 芦苇群落 > 翅碱蓬群落,分别为108.299984.516041.0333 mg·m2·h1,而光滩则表现为CO2吸收汇。整体来看,不同植被覆盖CH4日排放通量小,分别是0.0080–0.02990.0212–0.0068 mg·m2·h1但不同类型盐碱地仍存在差异,光滩和翅碱蓬群落为排放源,柽柳和芦苇群落是吸收汇。不同群落N2O日排放通量的差异性较弱。本试验同时研究了环境因子对不同类型盐碱地上三种温室气体排放通量的影响,相关分析表明,环境因子对光滩温室气体通量没有显著影响,其余三种植被覆盖的温室气体排放通量与不同深度土层温度呈现相关性,说明环境因素对盐碱地温室气体排放作用机制的复杂性。

Abstract: Salt-affected soils are extensively present and constitute about 7% of total land surface. However, our knowledge about greenhouse gas (GHG) turnover between the atmosphere and the saline soils is very limited. In order to evaluate the potential of GHG consumption in saline soils, we measured gas fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the soil surface to the atmosphere under saline-alkaline mudflat and various com- munity types in the Yellow River Delta in China. The CO2 emission followed the order: T. chinensis > P. australis > S. salsa > Saline-alkaline mudflat. On the whole, saline-alkaline mudflat and different vegetations acted as CH4 sink be- fore 12:00 and CH4 source after 12:00. However, the four ecosystems acted as N2O source in the whole day. Although measurements of the CO2, CH4, and N2O fluxes were taken simultaneously, CH4 and N2O fluxes were strongly corre- lated with soil temperature at different depths in T. chinensis community. The significantly negative correlations were also found between air and soil temperature and CO2 or CH4 fluxes in S. salsa, N2O fluxes in P. australis. While no sig- nificant correlation was found between greenhouse gases with soil moisture and electrical conductivity. These results probably suggest that factors other than soil temperature, moisture and salinity exerted a larger impact on CO2, CH4 and N2O flux because of its higher spatial and temporal variability.

文章引用: 聂园园 , 裴 悦 , 张立华 , 邵宏波 , 张俪文 (2012) 黄河三角洲不同类型盐碱地CO2、CH4和N2O通量特征。 环境保护前沿, 2, 45-51. doi: 10.12677/AEP.2012.23008

参考文献

[1] 方精云. 全球生态学: 气候变化与生态响应[M]. 北京: 高等教育出版社, 2000.

[2] Millennium Ecosystem Assessment. Ecosystems and human well- being: Biodiversity synthesis. Washington DC: Island Press, 2005.

[3] IPCC. Climate change 2001: The scientific basis. Cam-bridge: Cambridge University Press, 2001.

[4] R. Monastersky. A burden beyond bearing. Nature, 2009, 458 (7242): 1091-1094.

[5] 王玲玲, 孙志高, 牟晓杰等. 黄河口滨岸潮滩湿地CO2、CH4和N2O通量特征初步研究[J]. 草业学报, 2011, 20(3): 51-61.

[6] 李东, 曹广民, 黄耀等. 青藏高原高寒灌丛草甸生态系统碳平衡研究[J]. 草业科学, 2010, 27(1): 37-41.

[7] 吴彩霞, 傅华. 根系分泌物的作用及影响因素[J]. 草业科学, 2009, 26(9): 24-29.

[8] 周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响因素研究进展[J]. 草业学报, 2009, 18(2): 184-193.

[9] 韩方虎, 沈禹颖, 王希等. 苜蓿草地土壤氮矿化的研究[J]. 草业学报, 2009, 18(2): 11-17.

[10] R. Munns, M. Tester. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59(1): 651-681.

[11] 李彬, 王志春, 孙志高等. 中国盐碱地资源与可持续利用研究[J]. 干旱地区农业研究, 2005, 23(2): 154-158.

[12] 郗金标, 宋玉民, 邢尚军等. 黄河三角洲生态系统特征与演替规律[J]. 东北林业大学学报, 2002, 30(6): 111-114.

[13] C. C. Song, J. B. Zhang, Y. Y. Wang, et al. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. Journal of Environmental Management, 2008, 88(3): 428-436.

[14] I. A. Janssens, H. Lankreijer, G. Matteucci, et al. Productivity overshadows temperature in deter-mining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7(3): 269-278.

[15] L. E. Rustad, T. G. Hunt-ington and R. D. Boone. Controls on soil respiration: Implications for climate change. Biogeochemistry, 2000, 48(1): 1-6.

[16] 孟春, 王俭, 狄海廷. 白桦和落叶松人工林生长季节土壤 CO2排放通量及主要影响因素[J]. 东北林业大学学报, 2011, 39(4): 56-61.

[17] 李红丽, 杨萌, 张明祥等. 玉渡山水库生长季温室气体排放特征及其影响因素[J]. 生态学杂志, 2012, 31(2): 406-412.

[18] 李世朋, 汪景宽. 温室气体排放与土壤理化性质的关系研究进展[J]. 沈阳农业大学学报, 2003, 34(2): 155-159.

[19] A. Van den Pol-van Dasselaar, O. Oenema. Methane production and carbon mineralisation of size and density fractions of peat soils. Soil Biology and Biochemistry, 1999, 31(6): 877-886.

[20] R. T. Williams, R. L. Crawford. Methane produc-tion in Minnesota peatlands. Applied and Environmental Microbiology, 1984, 47(6): 1266-1271.

[21] M. Maljanen, J. Hytoenen, P. Maekiranta, et al. Greenhouse gas emissions from cultivated and abandoned organic croplands in Finland. Boreal Environment Research, 2007, 12(2): 133-140.

[22] 李玉娥, 林而达. 土壤甲烷吸收汇研究进展[J]. 地球科学进展, 1999, 14(6): 613-618.

[23] 陈先江, 王彦荣, 侯扶江. 草地生态系统温室气体排放机理及影响因素[J]. 草业科学, 2011, 28(5): 722-728.

[24] 杜睿, 王庚辰, 吕达仁等. 内蒙古温带半干旱羊草原温室气体N2O和CH4通量变化特征[J]. 自然科学进展, 2001, 11(6): 595-601.

[25] 刘晔, 牟玉静, 钟晋贤等. 氧化亚氮在森林和草原中的地–气交换[J]. 环境科学, 1997, 18(5): 14-18.

[26] J. F. Magenheimer, T. R. Moore, G. L. Chmura, et al. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Bruns-wick. Estuaries and Coasts, 1996, 19(1): 139- 145.

[27] 仝川, 曾从盛, 王维奇等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子[J]. 环境科学学报, 2009, 29(1): 207-216.

[28] 卢昌义, 叶勇, 林鹏等. 海南海莲红树林土壤CH4的产生及其某些影响因素[J]. 海洋学报, 1998, 20(6): 132-138.

[29] 张玉铭, 胡春胜, 张佳宝等. 农田土壤主要温室气体(CO2, CH4, N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4): 966-975.

[30] M. J. M. Oomes, P. J. Kuikman and F. H. H. Jacobs. Nitrogen availability and uptake by grassland in mesocosms at two water levels and two water qualities. Plant and Soil, 1997, 192(2): 249-259.

[31] 刘泽雄, 朱瑞琴, 姚顺等. 闽江河口咸草湿地冬季甲烷和二氧化碳通量及影响因子分析[J]. 湿地科学与管理, 2010, 6(3): 46-49.

分享
Top