电冲击下功能梯度压电带中裂纹尖端热效应
Thermal Effect of Functionally Graded Piezoelectric Materials with Crack by Electric Shock

作者: 李 星 * , 龙永义 :宁夏大学数学计算机学院;

关键词: 功能梯度压电材料裂纹奇异积分方程热效应 Functionally Grade Piezoelectric Materials Crack SingularIntegralEquation Thermal Effect

摘要:

摘 要:本文探讨在高电冲击载荷作用下,压电介质中裂纹尖端的热效应问题的奇异积分方程方法,通过引入热源功率,利用绝热近似,由简化的热传导方程得到了裂纹尖端在电冲击作用下短时间范围的温度场。通过构造位错密度函数,并利用Laplace变换和Fourier变换将原方程转化为Cauchy核的奇异积分方程,进而利用Chebyshev多项式展开以及Gauss-Chebyshev积分公式对该奇异积分方程进行数值求解,同时讨论了裂纹尺寸对温度升高值和升高区域大小的影响。

Abstract: With the global implementation of the “Framework Convention on Tobacco Control”, tobacco industry in different countries would meet more pressure in future development to a certain extent. This essay is based on Kunming flue-cured acquisition data 2006-2010 combined with quality control theory, non- constant process of quality control and logistic non-linear regression analysis to examine annual acquisition trend in history multi-levelly and multi-dimensionally and to excavate current situation deeply so as to discover natural discipline in flue-cured production, then establish an effective quality control index system of tobacco acquisition course assisted by current demands, which could lay the foundation for ensuring the acquisition process being accomplished efficiently and enhancing the ability of supplying high grade tobacco leaves, as well as strengthen the core competencies of Yunnan tobacco industry.

文章引用: 李 星 , 龙永义 (2012) 电冲击下功能梯度压电带中裂纹尖端热效应。 力学研究, 1, 1-7. doi: 10.12677/ijm.2012.11001

参考文献

[1] R. Fu, C. F. Qian and T. Y. Zhang. Electrical fracture toughness for conductive cracks driven by electric fields in piezoelectric materials. Applied Physics Letters, 2000, 76(1): 126-128.

[2] 白象忠, 胡宇达. 电磁热效应在导电薄板裂纹中的应用[Z]. 白以龙, 杨卫, 主编, 力学2000-力学2000学术会议, 北京, 2000年8月22-24日, 331-333.

[3] 白象忠, 乔桂英, 栾金雨等. 电磁热效应裂纹止裂的实验研究[J]. 实验力学, 2000, 15(3): 354-360.

[4] S. B. Bilyk, K. T. Ramesh and T. W. Wright. J. Y. Yang, G. A. Maugin, Eds. Numerical modeling of electro-mechanical inter- actions in mental cylinders, mechanics of electro-magnetic ma- terials and structures, 2000: 1-16.

[5] 周跃亭. 功能梯度材料中界面裂纹对弹性波的散射及热断裂问题[D]. 上海交通大学, 2007.

[6] 丁生虎. 功能梯度材料共线裂纹、任意角度裂纹断裂以及热应力问题研究[D]. 上海交通大学, 2009.

[7] S. H. Ding, X. Li. Thermal stress intensity factors for an inter- face crack in a functionally graded layered structures. Archive of Applied Mechanics, 2011, 81(7): 943-955.

[8] Y. T. Zhou, X. Li and J. Q. Qin. Transient thermal stress analysis of orthotropic functionally graded materials with a crack. Jour- nal of Thermal Stresses, 2007, 30(12): 1211-1231.

[9] 李星. 积分方程[M]. 北京: 科学出版社, 2011: 5366- 5370.

[10] Y. T. Zhou, X. Li and D. H. Yu. A partially insulated interface crack between an orthotropic graded coating and an orthotropic homogeneous substrate under heat flux supply. International Journal of Solids and Structures, 2010, 47(6): 768-778.

分享
Top