等离激元在薄膜太阳能电池中的研究进展
Research Progress of Surface Plasmon Applied in Thin Film Solar Cells

作者: 刘玉梅 * , 王新占 , 戴万雷 , 路万兵 , 郭少刚 , 于威 , 李晓苇 :;

关键词: 太阳能电池等离激元光捕获Solar Cells Plasmonics Light Trapping

摘要:

为了更高效地把光能转化为电能,研究人员尝试着在薄膜太阳能电池设计中引入金属纳米粒子的等离激元结构。通过等离激元对光的引导和限制,在降低电池的吸收层的物理厚度的同时能够保持薄膜电池较强的光吸收特性,在制备便宜高效的薄膜电池领域具有重大应用潜力。本文调研了等离激元在太阳能电池领域应用的最新进展情况,阐述了等离激元作用薄膜太阳能电池的机理,并对未来基于等离激元的太阳能电池设计进行了展望。

Abstract: In order to transfer light to electricity efficiently, thin film solar cells with the structure of supporting surface plasmons in metal particles are designed. Due to the surface plasmons can guide and localize lights, the physical thickness of solar photovoltaic absorbing layer can be decreased as well as the absorption in photovoltaic devices can be improved. This technology plays an important role in fabricating low-cost and high-efficiency thin film solar cells. In this review, the latest progress of the application of plasmonics in solar cells is researched, the mechanism of the intersection of plasmonics and photovoltaics is expounded, and an outlook on the future of solar cells based on these principles is offered.

文章引用: 刘玉梅 , 王新占 , 戴万雷 , 路万兵 , 郭少刚 , 于威 , 李晓苇 (2011) 等离激元在薄膜太阳能电池中的研究进展。 应用物理, 1, 102-107. doi: 10.12677/app.2011.13017

参考文献

[1] N. Keisuke, T. Katsuaki and A. A. Harry. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): Article ID 121904.

[2] 曲迪, 刘仿, 于嘉钒等. Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Applied Physics Letters, 2011, 98(11): Article ID 113119.

[3] D. Derkacs, S. H. Lim, P. Matheu, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Ap-plied Physics Letters, 2006, 89(9): Article ID 093103.

[4] R. Carsten, F. Stephan and L. Falk. Absorption enhancement in solar cells by lo-calized plasmon polaritons. Journal of Applied Physics, 2008, 104(12): Article ID 123102.

[5] S. Pillai, M. A. Green. Plasmonics for photo-voltaic applications. Solar Energy Materials & Solar Cells, 2010, 94(9): 1481-1486.

[6] D. M. Schaadt, B. Feng and E. T. Yu. Enhanced semi-conductor optical absorption via surface plasmon excitation in metal nano- particles. Applied Physics Letters, 2005, 86(6): Article ID 063106.

[7] F. J. Beck, A. Polman and K. R. Catchpole. Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 2008, 105(11): Article ID 114310.

[8] M. Changjun, L. Jennifer, V. Georgios, et al. Enhancement of op- tical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Applied Physics Letters, 2010, 96(13): Article ID 133302.

[9] T. D. Heidel, J. K. Mapel and M. Singh. Surface plasmon polariton mediated energy transfer in organic photovoltaic devices. Applied Physics Letters, 2007, 91(9): Article ID 093506.

[10] W. Liu, X. D. Wang, Y. Q. Li, et al. Surface plasmon enhanced GaAs thin film solar cells. Solar Energy Materials & Solar Cells, 2011, 95(3): 693-698.

[11] J. K. Mapel, M. Singh, M. A. Baldo, et al. Plasmonic excitation of organic double heterostructure solar cells. Applied Physics Letters, 2007, 90(12): Article ID 121102.

[12] S. Yusuke, Y. Kumiko and Y. Masafumi. Multilayer structure photovoltaic cells. Optical Re-view, 2005, 12(4): 324-327.

[13] M. Westphalen, U. Kreibig, J. Rostalski, et al. Metal cluster enhanced organic solar cells. Solar En-ergy Materials & Solar Cells, 2000, 61(1): 97-105.

[14] A. Polman. Plasmonics applied. Science, 2008, 322(5903): 868- 869.

[15] M. I. Stockman. Nanofocusing of optical energy in tapered plas- monic waveguides. Physical Review Letters, 2004, 93(13): Arti-cle ID 137404.

[16] E. Verhagen, M. Spasenović, A. Polman, et al. Nanowire plasmon excitation by adiabatic mode transformation. Physical Review Letters, 2008, 102(20): Article ID 203904.

[17] M. T. Hill, et al. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1: 589-594.

[18] R. F. Oulton, et al. Plasmon lasers at deep sub-wavelength scale. Nature, 2009, 461: 629-632.

[19] H. R. Stuart, D. G. Hall. Absorption enhancement in silicon- on-insulator waveguides using metal island films. Applied Physics Letters, 1996, 69(16): 2327-2329.

[20] R. Kostecki, Lafayette, CA(US); S. S. Mao, Castro Valley, CA(US). Surface Plas-mon-Enhanced Photo-Voltaic Device. US 2010/0175 745 A1. United States: 2010/0175745 A1, Jul.15. 2010.

分享
Top