N、Al、P替位掺杂对Si在石墨烯上吸附的影响
Effect of Si Adsorption on Graphene Doped with N, Al and P

作者: 胡功臣 * , 李艳慧 , 徐庆强 , 柯三黄 :;

关键词: 石墨烯掺杂吸附第一性原理Graphene Dopant Adsorption First-Principles

摘要:

采用基于密度泛函理论的第一性原理计算了N、Al和P掺杂对Si在石墨烯上吸附的影响。结果表明:N掺杂石墨烯为n型掺杂,提高了石墨烯体系的导电性;N、P原子掺杂比Al掺杂石墨烯容易;杂质类型对Si在石墨烯上的吸附位置有显著的影响;Al、P掺杂增强了Si在石墨烯上的吸附, N掺杂对Si在石墨烯上吸附的影响很小;Si吸附在N-graphene、P-graphene体系具有磁性,Si吸附Al-graphene体系磁矩为零,不显示磁性。

Abstract: First-principles calculations based on density functional theory were carried out to study the effects of nitrogen, aluminum and phosphorus doping on Si adsorption on grapheme. We found that N doping is the n-type doping of grapheme and increases the conductivity of the grapheme system. Both N and P doping graphene system are relatively stable while Al doping graphene system is not. The effect is stronger for Si adsorption position on graphene for different types of impurity. Al and P atom enhance the Si adsorption on graphene, the effect of N doping is far less than the other two dopant do. No magnetic moment was observed in Si adsorbed on Al doping graphene while net magnetism was brought in Si adsorbed on N and P doping graphene.

文章引用: 胡功臣 , 李艳慧 , 徐庆强 , 柯三黄 (2011) N、Al、P替位掺杂对Si在石墨烯上吸附的影响。 应用物理, 1, 87-91. doi: 10.12677/app.2011.13014

参考文献

[1] K. S. Novoselov, A. K. Geim, S. V. Mozorov, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5996): 666-669.

[2] A. K. Geim, S. V. Mozorov. The rise of grapheme. Na-ture Materials, 2007, 6(3): 183-191.

[3] D. Garcia-Sanchez, A. M. van der Zande, A. San Paulo, et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Letters, 2008, 8(5): 1399-1403.

[4] J. Moser, A. Verdaguer, D. Jiménez, et al. The envi-ronment of graphene probed by electrostatic force microscopy. Applied Physics Letters, 2008, 92(12): Article ID 123507.

[5] G. Giovannetti, P. A. Khomyakov, G. Brocks, et al. Doping graphene with metal contacts. Physical Review Letters, 2008, 101(2): Article ID 026803.

[6] K. T. Chan, J. B. Neaton and M. L. Cohen. First-principles study of metal adatom adsorption on Grapheme. Physical Review B, 2008, 77(23): Article ID 235430.

[7] H. Sevincli, M. Topsakal, E. Durgun, et al. Electronic and magnetic properties of 3d transition-metal atom ad-sorbed graphene and graphene nanoribbons. Physical Review B, 2008, 77(19): Article ID 195434.

[8] M. Wu, E.-Z. Liu and J. Z. Jiang. Magnetic behavior of graphene absorbed with N, O, and F atoms: A first-principles study. Applied Physics Letters, 2008, 93(8): Article ID 082504.

[9] Y. G. Zhou, X. T. Zu, F. Gao, et al. Adsorption-induced magnetic properties and metallic behavior of grapheme. Applied Phys-ics Letters, 2009, 95(12): Article ID 123119.

[10] M. Endo, T. Hayashi, S.-H. Hong, et al. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. Journal of Applied Physics, 2001, 90(11): 5670-5674.

[11] R. Czerw, M. Terrones, J.-C. Charlier, et al. Identification of electron donor states in N-doped carbon nanotubes. Nano Letters, 2001, 1(9): 457-460.

[12] P. Chen, X. Wu and J. Lin. High H2 uptake by alkali-doped carbon nanotubes under ambient pres-sure and moderate temperatures. Science, 1999, 285(5424): 91-93.

[13] V. Barone, J. E. Peralta, J. Uddin, et al. Screened exchange hy-brid density-functional study of the work function of pristine and doped single-walled carbon nanotubes. The Journal of Chemical Physics, 2006, 124(2): Article ID 024709.

[14] S. Lattil, S. Roche, D. Mayyou, et al. Mesoscopic transport in chemically doped carbon nanotubes. Physical Review Letters, 2004, 92(25): Article ID 256805.

[15] 戴宪起, 李艳慧, 赵建华等. 空位和B掺杂对Si在石墨烯上吸附的影响[J]. 物理化学学报, 27(2): 369-373.

[16] G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and tran-sition elements. Journal of Physics: Condensed Matter, 1994, 6(40): 8245-8257.

[17] J. P. Perdew, K. Burke and M. Ernzerhof. Generalized gradient approximation made simple. Physics Review Letters, 1996, 77(18): 3865-3868.

[18] J. Y. Dai, J. M. Yuan and P. Giannozzi. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study. Applied Physics Letters, 2009, 95 (23): Article ID 232105.

[19] P. A. Denis. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chemical Physics Letters, 2010, 492(4-6): 251-257.

分享
Top