基于EFTEM表征的Al含量对18Cr-ODS钢的相分离行为影响研究
EFTEM Study on the Effect of Al Content on the Phase Separation Behavior in 18 Cr-ODS Steels

作者: 窦 鹏 , 张允题 , 方 宇 , 叶 侨 :重庆大学材料科学与工程学院,重庆; 木村晃彦 :京都大学先进能源研究所,京都,日本; 鵜飼重治 :北海道大学工程学部,材料科学与工程系,札幌,日本;

关键词: ODS钢热时效相分离核–壳结构能量过滤透射电子显微学(EFTEM)ODS Steels Thermal Ageing Phase Separation Core-Shell Structure Energy-Filtered Transmission Electron Microscopy (EFTEM)

摘要:
Al添加高铬ODS钢有优异的蠕变强度、抗氧化性能、抗腐蚀性能、耐辐照性能及核燃料相容性,是先进核能系统和轻水堆的抗事故燃料的最有希望的候选包壳材料之一。在高温环境长期服役时,Al添加高铬ODS钢有可能由于发生Fe-Cr相分离而遭受热时效硬化和/或热时效脆化。本研究通过能量过滤透射电子显微学(Energy-filtered transmission electron microscopy, EFTEM)技术研究了Al含量(5~9 wt.%)对18Cr-ODS钢在经过475℃和9000 h热时效后的Fe-Cr相分离行为的影响。18Cr-5Al (wt.%)和18Cr-7Al (wt.%) ODS钢中发生了显著的Fe-Cr相分离,形成了大量的富铬相(α’相),并发现大量有核–壳结构粒子。18Cr-9Al (wt.%) ODS钢中未发现α′相与核–壳结构,这表明当Al的添加量为9 wt.%时,可完全抑制18Cr-ODS钢中的Fe-Cr相分离。根据所得结果简要讨论了核–壳结构形成机制。

Abstract: Al-added high-Cr ODS steel is one of the most promising candidate cladding materials for advanced nuclear energy systems and accident tolerant fuel of light water reactors because it has excellent resistance to creep, oxidation, corrosion and irradiation and, moreover, very good compatibility with nuclear fuels. However, it may suffer from thermal aging hardening and/or embrittlement during long-term service in the high temperature environment due to Fe-Cr phase separation. The effect of Al content (5 - 9 wt.%) on the Fe-Cr phase separation behavior of 18Cr-ODS steels, which have undergone thermal aging at 475˚C for 9000 h, has been investigated by energy-filtered transmission electron microscopy (EFTEM). In isothermally aged 18Cr-5Al and 18Cr-7Al ODS steels, a large amount of Cr-enriched phases (α’ phases) were found, indicating significant Fe-Cr phase separation occurred. However, no α′ phase was detected in isothermally aged 18Cr-9Al ODS steel, which means the Fe-Cr phase separation behavior of 18Cr-ODS steel could be completely suppressed when the concentration of Al reaches 9 wt.%. Core-shell structured nanoparticles were detected only when Fe-Cr phase separation occurred. The underlying mechanism of the formation of core-shell structure was briefly discussed based on the results obtained here.

1. 引言

第四代核能系统在经济性、安全性、可靠性与可持续性等方面有革命性的提高,同时还可防止核扩散 [1][2]。轻水堆的抗事故燃料(Accident tolerant fuel, ATF,又称事故容错燃料)能够进一步提高其安全性 [2][3]。Al添加高铬氧化物弥散强化钢(Oxide-Dispersion-Strengthened, ODS)有优异的蠕变强度 [4]- [15]、抗氧化和抗腐蚀性能 [6][13][15]- [24]、耐辐照性能 [6][13][15][25]- [37]以及良好的核燃料相容性 [38],是先进核能系统和轻水堆的抗事故燃料的最有希望的候选包壳材料之一 [6][13][15]。在高温环境长期服役时,Al添加高铬ODS钢有可能由于发生Fe-Cr相分离而遭受热时效硬化和/或热时效脆化 [6][39][40]。为了优化合金成分,以便开发高性能Al添加高铬ODS钢,须研究合金元素含量对其长期热时效过程中的Fe-Cr相分离行为的影响。

从二十世纪六十年代开始,各国科学家对Fe-Cr-Al合金的Fe-Cr相分离行为进行了广泛研究 [6][39][41]- [60]。研究发现,Al添加显著影响Fe-Cr-Al合金的Fe-Cr相分离行为,进而显著影响其热时效硬化和/或热时效脆化行为 [41][42][43][48][49][50][51]。Read等 [48][49]和Capdevila等 [50][51]研究发现,相对于富铬相(α’相),Al在热时效过程中优先向富铁相(α相)中配分,这意味着Al添加能够使“混溶隙”缩小,从而抑制Fe-Cr相分离。Kobayashi等 [41]绘制了Fe-Cr-Al三元合金(Fe-(10-30)Cr-(0-20)Al (at.%))的“475℃脆性”图谱,发现较高浓度的Al添加抑制Fe-Cr相分离,从而抑制“475℃脆性”;而低浓度的Al的添加反而促进“475℃脆性”。

研究表明,即使含有相同浓度的Cr,ODS钢的热时效硬化和热时效脆化的倾向性也低于非氧化物弥散强化钢 [6][39][40]。这应该归功于ODS钢中的密集分布的超细纳米氧化物粒子:纳米氧化物可能影响Cr的扩散路径,延迟或阻止α’相的形成,进而降低热时效硬化和热时效脆化的敏感性 [39]。到目前为止,关于Al元素添加对高铬ODS钢的相分离行为的影响的研究集中于早期开发的商用的MA956 [48][49][56][57][60]和PM2000 [50]- [56][58][59],尚没有关于不同浓度Al添加对有不同Cr含量高铬ODS钢中Fe-Cr相分离行为影响的系统研究报道。

本文利用透射电子显微学(Transmission electron microscopy, TEM)和能量过滤透射电子显微学(Energy-filtered transmission electron microscopy, EFTEM)技术研究了不同含量Al添加对在475℃经9000 h热时效的18Cr-ODS钢的Fe-Cr相分离行为的影响规律。在研究中发现了伴随Fe-Cr相分离的发生而形成的核–壳结构纳米粒子。本文结合研究结果简要讨论了核–壳结构形成机制。

2. 实验材料及方法

2.1. 实验材料

本文所用的三种Al添加高铬ODS钢的制备过程如下:使用高能球磨机对混合的预合金化粉末和氧化钇粉末在Ar保护气氛下进行机械合金化,球料比为15:1,球磨时间为48 h。随后在真空度为0.1 Pa,温度为673 K的条件下脱气3 h。接下来在1150℃下进行热挤压,挤压比为9.2,挤压棒直径为~25 mm。最后将挤压棒在1200℃退火处理1 h。3种ODS钢的化学成分如表1所示。

2.2. 样品制备

三种Al添加高铬ODS钢TEM-EFTEM样品制作过程如下:首先分别沿着平行和垂直于棒材挤压轴方向线切割加工直径为3 mm,厚度为~350 µm的圆片状样品;随后将样品在真空条件下封装(真空度为10−4 Torr);接下来在475℃进行9000 h的等温热时效处理;然后将试样机械研磨减薄至为~100 µm;最后,利用TENUPOL装置,使用“双喷电解液”(HClO4:CH3COOH = 1:19),在温度为20℃和电压为20 V的条件下进行最终减薄,制得TEM-EFTEM分析表征样品。

2.3. 实验设备和方法

利用热场发射并兼具TEM和扫描透射电镜(Scanning transmission electron microscopy, STEM)模式的JEM 2200FS分析和表征等温热时效后三种Al添加高铬ODS钢的纳米尺度的化学成分和结构。JEM 2200 FS的加速电压为200 kV,极限晶格分辨率为0.1 nm,配备后置式Gatan成像过滤器和“双倾样品台”。

α′相极为细小,嵌入或者包埋于有磁性的铁素体基体中,其晶体结构与α相相同,并且其晶格常数与α相极为接近。因此,利用传统的TEM成像技术难以观察和研究α′相。

EFTEM技术利用的离子化边强度对应于元素分布图,所以该技术适用于α′相的鉴别。利用后置式Gatan成像过滤器记录得到的EFTEM像。具体做法:首先采集电子能量损失谱(Electron energy loss spectroscopy, EELS),然后在后置式成像过滤器里用能量选择狭缝选取特定能量范围的非弹性散射电子形

成EFTEM像。EFTEM像均在样品的薄区的边缘之非常薄的区域得到。

分别利用低能量损失区(~10~200 eV)的“跃比图”(二窗口法)和内壳层电子激发的高能量损失区(~400~800 eV)的“定量元素分布图”(三窗口法)获得EFTEM分析数据。“跃比图”和“定量元素分布图”均在TEM模式下获得,这使得EFTEM图像的快速获取成为可能(仅需几秒到几十秒)。

在Cr M2,3边(42 eV)“跃比图”获得过程中,“边前能量”和“边后能量”分别设置为36 eV和52 eV;能量选择狭缝宽度为~8~10 eV。在Cr L2,3边(575 eV)“定量元素分布图”获得过程中,边前能量窗口1和边前能量窗口2分别设置在535 eV和560 eV,而边后能量窗口设置在590 eV;能量选择狭缝宽度为~20 eV。

在本文中,有时采用会聚束衍射(Convergent beam electron diffraction, CBED)法 [61]测量TEM-EFTEM样品厚度。但是,绝大多数情况下采用基于结合等离子自由程(厚样品则为低能量损失区的平均自由程)的等离子峰强度(厚样品则为低能量损失谱的总强度)和零能量损失峰强度分析的EELS技术获得TEM-EFTEM样品厚度。相对于其它方法,EELS技术由于适用于较大厚度范围的晶体和非晶等样品而有较为明显的优势。

3. 结果与讨论

图1(a)和图2(a)分别显示了热时效后18Cr-5Al ODS钢和18Cr-7Al ODS钢中纳米氧化物的接近“双束

Figure 1. (a) TEM bright field image of 18Cr-5Al ODS steel after isothermally ageing, (b) TEM bright field image of the region in isothermally aged 18Cr-5Al ODS steel where EFTEM analyses were performed, the analyzed region is ~32.52 nm thick, (c) Cr M2,3 EFTEM elemental map, (d) Cr L2,3 EFTEM elemental map

图1. (a) 热时效后18Cr-5Al ODS钢的TEM明场像,(b) EFTEM分析区域的TEM明场像,厚度为32.52 nm,(c) Cr M2,3 EFTEM元素图,(d) Cr L2,3 EFTEM元素图

Figure 2. (a) TEM bright field image of 18Cr-5Al ODS steel after isothermally ageing, (b) TEM bright field image of the region in isothermally aged 18Cr-5Al ODS steel where EFTEM analyses were performed, the analyzed region is ~32.52 nm thick, (c) Cr M2,3 EFTEM elemental map, (d) Cr L2,3 EFTEM elemental map

图2. (a) 热时效后18Cr-7Al ODS钢的TEM明场像,(b) EFTEM分析区域的TEM明场像,厚度为30.41 nm,(c) Cr M2,3 EFTEM元素图,(d) Cr L2,3 EFTEM元素图

动力学条件”的明场像。图1(a)中有若干相对较大的粒子和许多相当小的纳米氧化物。图1(a)右上部的相对较大的粒子上附着的形状不规则的明亮衬度显示加工制备过程中形成的Ar气泡,这是因为机械合金化是在Ar保护气氛中进行的。图1(b)的右下部的出现氧化物团聚,该现象是偶然发现的,实际上非常少见。

图1(a)和图1(b)及图2(a)和图2(b)均为利用相位衬度机制的离焦像,不仅显示较稀疏分布的尺寸较大纳米氧化物,还显示密集分布的超细α′相粒子。由图1(b)及图2(a)和图2(b)可见,热时效后18Cr-5Al ODS钢和18Cr-7Al ODS钢中存在许多具有核–壳结构的粒子,其特征如下:相对于超细粒子而言,尺寸较大的粒子容易具有核–壳结构;即使对于尺寸较大的粒子,有的具有核–壳结构,而有的则不具有核–壳结构。没有核–壳结构的超细粒子可能是纳米氧化物,也可能是α′相,这需利用原子探针形貌学技术 [62]澄清。

图1(c)和图1(d)分别显示热时效后18Cr-5Al ODS钢中图1(b)所示区域的Cr M2,3“跃比图”和Cr L2,3“定量元素分布图”。图2(c)和图2(d)分别显示热时效后18Cr-7Al ODS钢中图2(b)所示区域的Cr M2,3“跃比图”和Cr L2,3“定量元素分布图”。在上述所有EFTEM图像中,明亮衬度表示此处Cr元素富集。显然,由图1(c)和图1(d)及图2(c)和图2(d)可见,热时效后18Cr-5Al ODS钢和18Cr-7Al ODS钢中Cr元素分布并不均匀,形成大量α′相粒子,这意味着两种Al添加高铬ODS钢在475℃经9000 h热时效后发生了显著的Fe-Cr相分离。

在475℃经9000 h热时效后,18Cr-5Al ODS钢中发生了显著的α→α + α′相分离行为。这意味着Cr含量为16.78 wt.%时,4.46 wt.%的Al不足以抑制Fe-Cr-Al ODS钢的Fe-Cr相分离行为。参考文献 [39]的图5所示的Fe-Cr-Al三元合金相图显示:18Cr-5Al ODS钢能发生Fe-Cr相分离而形成α′相。这与本研究结果一致。

在475℃经9000 h热时效后,18Cr-7Al ODS钢中发生了显著的α→α + α′相分离行为。这意味着当Cr含量为16.73 wt.%时,6.28 wt.% Al仍不足以抑制Fe-Cr-Al ODS钢的Fe-Cr相分离行为。然而,根据参考文献 [39]的图5所示的Fe-Cr-Al三元合金相图推断:18Cr-7Al ODS钢中不会发生Fe-Cr相分离行为而形成α′相。Han等 [39]研究发现,在475℃经9000 h时效后,18Cr-7Al ODS钢出现了显著的热时效硬化现象,他们据此推测:在475℃经9000 h热时效后,18Cr-7Al ODS钢中会发生Fe-Cr相分离行为而形成α′相。本研究结果证实了其推测。在475℃经9000 h热时效后18Cr-7Al ODS钢中形成了大量的颗粒状α′相(见图2(c)和图2(d)),这在一定程度上解释了18Cr-7Al ODS钢的显著的热时效硬化现象(见文献 [39]中的图2(c)和图3(b))。

在等温热时效的18Cr-5Al ODS钢和18Cr-7Al ODS钢的上述EFTEM图像(图1(c)和图1(d)及图2(c)和图2(d))中,出现一些“暗衬度”区域,表示这些区域的Cr的浓度显著低于其它区域。通过对比图1(b)和图1(d)以及图2(b)和图2(c)与图2(d)的衬度特征可知,这些Cr含量低的区域即为尺寸较大的氧化物粒子所在的位置。

前已述及,在等温热时效的18Cr-5Al ODS钢和18Cr-7Al ODS钢中出现许多有核–壳结构的粒子(图1(b)及图2(a)和(b))。18Cr-5Al ODS钢在475℃经5000h热时效出现核–壳结构粒子的现象曾被报道 [39]。由图1(d)、图2(c)与图2(d)以及参考文献 [39]中的图4(b)可见,核–壳结构的粒子是由周围的富Cr的“壳”和中心的贫Cr的氧化物“核”组成的。对于未进行热时效处理的18Cr-5Al ODS钢和18Cr-7Al ODS钢,虽拍摄大量利用相位衬度机制的离焦像,也未发现核–壳结构,这意味着核–壳结构是在475℃经长期热时效形成的。

图3(a)和图3(b)以及图4(a)显示了热时效后18Cr-9Al ODS钢中纳米氧化物的接近“双束动力学条件”的明场像。可见18Cr-9Al ODS钢的基体中有若干尺寸较大的粒子及许多尺寸相当小的纳米氧化物。图3(a)和图3(b)的上部及右上部及图4(a)的左上部的较大纳米氧化物上附着的形状不规则的明亮衬度显示加工制备过程中形成的Ar气泡,这同样是因为机械合金化是在Ar保护气氛中进行的。虽拍摄了大量利用相位衬度机制的离焦像,也未探测到有核–壳结构粒子的存在。

图3(c)和图3(d)分别显示热时效后18Cr-9Al ODS钢中图3(b)所示区域的Cr M2,3“跃比图”和Cr L2,3“定量元素分布图”。图4(b)显示热时效后18Cr-9Al ODS钢中图4(a)所示区域的Cr M2,3“跃比图”。显然,由图3(c)和图3(d)以及图4(b)可见,热时效后18Cr-9Al ODS钢中Cr元素分布均匀,并未形成α′相,这意味着这种Al添加高铬ODS钢在475℃经9000 h热时效后未发生Fe-Cr相分离。这表明当Cr含量为16.84 wt.%时,8.16 wt. % Al足以抑制Al添加高铬ODS钢中的α→α + α′相分离行为。图3(a)和(b)以及图4(a)显示的粒子全部为纳米氧化物。

在等温热时效的18Cr-9Al ODS钢的EFTEM图像(图3(c)和图3(d)以及图4(b))中,出现一些“暗衬度”区域,表示这些区域的Cr的浓度显著低于其它区域。通过对比图3(c)、图3(d)和图3(b)以及图4(a)和图4(b)的衬度特征可知,这些Cr含量低的区域即为尺寸较大的氧化物粒子所在的位置。

在475℃经9000 h热时效后,未发生α→α + α′相分离的18Cr-9Al ODS钢中未探测到具有核–壳结构的粒子的存在;而发生相分离的18Cr-5AlODS钢和18Cr-7Al ODS钢中发现了大量的具有核–壳结构的粒子。可以推断这种核–壳结构的形成与Fe-Cr相分离行为密切相关。由于核–壳结构粒子是由纳米氧

Figure 3. (a) TEM bright field image of 18Cr-9Al ODS steel after isothermally ageing, (b) TEM bright field image of the region in isothermally aged 18Cr-9Al ODS steel where EFTEM elemental maps (c) and (d) were acquired, the analyzed region is ~30.73 nm thick, (c) Cr M2,3 EFTEM elemental map, (d) Cr L2,3 EFTEM elemental map

图3. (a) 热时效后18Cr-9Al ODS钢的TEM明场像,(b) EFTEM分析区域的TEM明场像,厚度为30.73 nm,(c) Cr M2,3 EFTEM元素图,(d) Cr L2,3 EFTEM元素图

Figure 4. (a) TEM bright field image of the region in isothermally aged 18Cr-9Al ODS steel where EFTEM elemental map (b) was acquired, the analyzed region is ~46.20 nm thick, (b) Cr M2,3 EFTEM elemental map

图4. (a) EFTEM表征区域的TEM明场像,厚度为46.20 nm,(b) Cr M2,3 EFTEM元素图

化物内核 + 富Cr外壳组成的,这意味着在长期热时效发生相分离的过程中Cr元素由铁素体钢基体扩散至氧化物/基体的异质界面处。

图1(b)及图2(a)和图2(b)可见,热时效后18Cr-5Al ODS钢和18Cr-7Al ODS钢中只有一部分粒子具有核–壳结构;凡是具有核–壳结构的粒子,其尺寸均较大,而超细粒子呈现核–壳结构的倾向性较小;即使较大的粒子,有些呈现核–壳结构,有些则没有核–壳结构。这意味着Cr元素自基体向氧化物/基体的异质界面扩散的行为以及随后在异质界面处附着的行为可能与纳米氧化物的尺寸及基体/氧化物界面结构(如“共格性”、晶格错配度和错配应变等)有关。

4. 结论

本文利用能量过滤透射电子显微学技术(EFTEM)对在475℃经9000 h热时效后18Cr-5Al (wt.%)、18Cr-7Al (wt.%)和18Cr-9Al (wt.%)三种Al添加高铬ODS钢的微观结构和化学进行表征,研究了Al元素含量对18Cr ODS钢的热时效行为的影响。结论如下:

1) 18Cr-5Al (wt.%)和18Cr-7Al (wt.%)ODS钢中发生了显著的Fe-Cr相分离行为,形成了大量的高密度的α′相粒子;Cr含量为16.78 wt.%时,4.46 wt.%的Al尚不足以抑制ODS钢的相分离行为;当Cr含量为16.73 wt.%时,6.28 wt.% Al仍不足以抑制ODS钢的Fe-Cr相分离行为;

2) 18Cr-9Al (wt.%)ODS钢中未发生Fe-Cr相分离行为,没有α′相粒子形成;Cr含量为16.84 wt.%时,8.16 wt.% Al可完全抑制ODS钢的α→α + α′相分离行为;

3) 发生Fe-Cr相分离行为的18Cr-5Al(wt.%)和18Cr-7Al (wt.%)ODS钢中形成了大量的具有核–壳结构粒子,未发生α→α + α′相分离行为的18Cr-9Al (wt.%)ODS钢中未探测到核–壳结构粒子;核–壳结构的形成与相分离过程中的Cr元素向氧化物/基体异质界面的扩散行为以及在异质界面处的附着行为有关。

基金项目

本研究受中国国家自然科学基金项目(项目号:51571042和51871034)资助。本文还包含以北海道大学为牵头单位的日本文部科学省项目:“抗事故ODS钢的研究与开发”所取得的结果。窦鹏在此特别感谢北京科技大学材料科学与工程学院的韩文妥博士在热时效实验以及京都大学先进能源研究所籔内圣皓博士在TEM-EFTEM实验方面给予的协助。

文章引用: 窦 鹏 , 张允题 , 方 宇 , 叶 侨 , 木村晃彦 , 鵜飼重治 (2018) 基于EFTEM表征的Al含量对18Cr-ODS钢的相分离行为影响研究。 材料科学, 8, 917-927. doi: 10.12677/MS.2018.89107

参考文献

[1] 中国工程院“我国核能发展的再研究”项目组. 我国核能发展的再研究[M]. 北京: 清华大学出版社, 2015.

[2] 中国科技技术协会主编, 中国核学会编著. 核科学技术学科发展报告(2014-2015) [M]. 北京: 中国科学技术出版社, 2016.

[3] Zinkle, S.J., Terrani, K.A., Gehin, J.C., et al. (2014) Accident Tolerant Fuels for LWRs: A Perspective. Journal of Nuclear Materials, 448, 374-379.
https://doi.org/10.1016/j.jnucmat.2013.12.005

[4] 窦鹏, 张鑫, 木村晃彦, 贺跃辉, 刘锦川. 锆和钛含量对铝添加高铬ODS钢氧化物粒子的影响[J]. 材料科学, 2017, 7(3): 413-422.

[5] Brandes, M.C., Kovarik, L., Miller, M.K., et al. (2011) Creep Behavior and Deformation Mechanisms in a Nanocluster Strengthened Ferritic Steel. Acta Materialia, 60, 1827-1839.
https://doi.org/10.1016/j.actamat.2011.11.057

[6] Kimura, A., Kasada, R., Iwata, N., Kishimoto, H., Zhang, C.H., Isselin, J., Dou, P., et al. (2011) Development of Al Added High-Cr ODS Steels for Fuel Cladding of Next Generation Nuclear Systems. Journal of Nuclear Materials, 417, 176-179.
https://doi.org/10.1016/j.jnucmat.2010.12.300

[7] Ukai, S., Nishida, T., Okuda, T., et al. (1998) R&D of Oxide Dispersion Strengthened Ferritic Martensitic Steels for FBR. Journal of Nuclear Materials, 258-263, 1745-1749.
https://doi.org/10.1016/S0022-3115(98)00241-4

[8] Grimes, R.W. and Nuttall, W.J. (2010) Generating the Op-tion of a Two-Stage Nuclear Renaissance. Science, 329, 799-803.
https://doi.org/10.1126/science.1188928

[9] Dou, P., Kimura, A., Okuda, T., et al. (2011) Polymorphic and Co-herency Transition of Y-Al Complex Oxide Particles with Extrusion Temperature in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel. Acta Materialia, 59, 992-1002.
https://doi.org/10.1016/j.actamat.2010.10.026

[10] Kimura, A., Kasada, R., Iwata, N., Kishimoto, H., Zhang, C.H., Isselin, J., Dou, P., et al. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear Systems 1) Introduction and Alloy Design. In: Proceedings of the ICAPP 2009, Tokyo, Article ID: 9220.

[11] Furukawa, T., Ohtsuka, S., Inoue, M., Okuda, T., Abe, F., Ohnuki, S., Fujisawa, T. and Kimura, A. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear Systems 4) Mechanical Properties at Elevated Temperatures. In: Proceedings of the ICAPP 2009, Tokyo, Article ID: 9221.

[12] Dou, P., Kimura, A., Okuda, T., et al. (2011) Effects of Extrusion Temperature on the Nano-Mesoscopic Structure and Mechanical Properties of an Al-Alloyed High-Cr ODS Ferritic Steel. Journal of Nuclear Materials, 417, 166-170.
https://doi.org/10.1016/j.jnucmat.2011.01.061

[13] Dou, P., Kimura, A., Kasada, R., et al. (2014) TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Steel with Zr Addition. Journal of Nuclear Materials, 444, 441-453.
https://doi.org/10.1016/j.jnucmat.2013.10.028

[14] Hsiung, L.L., Fluss, M.J., Tumey. S.J., et al. (2010) Formation Mechanism and the Role of Nanoparticles in Fe-Cr ODS Steels Developed for Radiation Tolerance. Physical Review B, 82, 184103.
https://doi.org/10.1103/PhysRevB.82.184103

[15] Dou, P., Kimura, A., Kasada, R., et al. (2017) TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel with Hf Ad-dition. Journal of Nuclear Materials, 485, 189-201.
https://doi.org/10.1016/j.jnucmat.2016.12.001

[16] Cho, H.S., Ohkubo, H., Iwata, N., Kimura, A., Ukai, S. and Fujiwara, M. (2006) Improvement of Compatibility of Advanced Ferritic Steels with Super Critical Pressurized Water Toward a Higher Thermally Efficient Water-Cooled Blanket System. Fusion Engineering and Design, 81, 1071-1076.
https://doi.org/10.1016/j.fusengdes.2005.09.056

[17] Cho, H.S. and Kimura, A. (2007) Corrosion Resistance of High-Cr Oxide Dispersion Strengthened Ferritic Steels in Super-Critical Pressurized Water. Journal of Nuclear Materials, 367-370, 1180-1184.
https://doi.org/10.1016/j.jnucmat.2007.03.211

[18] Lee, J.H., Kasada, R., Kimura, A., Okuda, T., Inoue, M., Ukai, S., Ohnuki, S., Fujisawa, T. and Abe, F. (2011) Influence of Alloy Composition and Temperature on Corrosion Behavior of ODS Ferritic Steels. Journal of Nuclear Materials, 417, 1225-1228.
https://doi.org/10.1016/j.jnucmat.2010.12.279

[19] Park, D.J., Kim, H.G., Park, J.Y., Jung, Y.I., Park, J.H. and Koo, Y.H. (2015) A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-Temperature Steam Envi-ronment. Corrosion Science, 94, 459-465.
https://doi.org/10.1016/j.corsci.2015.02.027

[20] Zhong, W.C., Mouche, P.A., Han, X.C., Heuser, B.J., Man-dapaka, K.K. and Was, G.S. (2016) Performance of Iron-Chromium-Aluminum Alloy Surface Coatings on Zircaloy 2 under High-Temperature Steam and Normal BWR Operating Conditions. Journal of Nuclear Materials, 470, 327-338.
https://doi.org/10.1016/j.jnucmat.2015.11.037

[21] Unocic, K.A., Hoelzer, D.T. and Pint, B.A. (2015) Micro-structure and Environmental Resistance of Low Cr ODS FeCrAl. Materials at High Temperatures, 32, 123-132.
https://doi.org/10.1179/0960340914Z.00000000088

[22] Cheng, T., Keiser, J.R., Brady, M.P., Terrani, K.A. and Pint, B.A. (2012) Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure. Journal of Nuclear Materials, 427, 396-400.
https://doi.org/10.1016/j.jnucmat.2012.05.007

[23] Pint, B.A., Terrani, K.A., Brady, M.P., Cheng, T. and Keiser, J.R. (2013) High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam-hydrogen Environments. Journal of Nuclear Materials, 440, 420-427.
https://doi.org/10.1016/j.jnucmat.2013.05.047

[24] El-Dasher, B., Farmer, J., Ferreira, J., Serrano de Caro, M., Rubenchik, A. and Kimura, A., (2011) Corrosion of Oxide Dispersion Strengthened Iron-chromium Steels and Tantalum in Fluoride Salt Coolant: An in Situ Compatibility Study for Fusion and Fusion-fission Hybrid Reactor Concepts. Journal of Nuclear Materials, 419, 15-23.
https://doi.org/10.1016/j.jnucmat.2011.07.036

[25] Odette, G.R., Alinger, M.J. and Wirth, B.D. (2008) Recent Developments in Irradiation-Resistant Steels. Annual Review of Materials Research, 38, 471-503.
https://doi.org/10.1146/annurev.matsci.38.060407.130315

[26] Zinkle, S.J. and Snead, L.L. (2014) Designing Radiation Resistance in Materials for Fusion Energy. Annual Review of Materials Research, 44, 241-267.
https://doi.org/10.1146/annurev-matsci-070813-113627

[27] Marquis, E.A., Hyde, J.M., Saxey, D.W., Loza-no-Perez, S., Castro, V.D., Hudson, D., Williams, C.A., Humphry-Baker, S. and Smith, G.D.W. (2009) Nuclear Reactor Materials at the Atomic Scale. Materials Today, 12, 30-37.
https://doi.org/10.1016/S1369-7021(09)70296-2

[28] Allen, T., Busby, J., Meyer, M. and Petti, D. (2010) Mate-rials Challenges for Nuclear Systems. Materials Today, 13, 14-23.
https://doi.org/10.1016/S1369-7021(10)70220-0

[29] Zinkle, S.J. and Was, G.S. (2013) Materials Challenges in Nuclear Energy. Acta Materialia, 61, 735-758.
https://doi.org/10.1016/j.actamat.2012.11.004

[30] Ohnuki, S., Hashimoto, N., Ukai, S., Kimura, A., Inoue, M., Kaito, T., Fujisawa, T., Okuda, T., Abe, F. and Kimura, A. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear System 9) Damage Structure Evolution under Electron-Irradiation. In: Proceedings of the ICAPP 2009, Tokyo, Article ID: 9307.

[31] Yu, C.Z., Oka, H., Hashimoto, N. and Ohnuki, S. (2011) Development of Damage Structure in 16Cr-4Al ODS Steels during Electron-Irradiation. Journal of Nuclear Materials, 417, 286-288.
https://doi.org/10.1016/j.jnucmat.2011.02.037

[32] Bai, X.M., Voter, A.F., Hoagland, R.G., Nastasi, M. and Ub-eruaga, B.P. (2010) Efficient Annealing of Radiation Damage near Grain Boundaries via Interstitial Emission. Science, 327, 1631-1634.
https://doi.org/10.1126/science.1183723

[33] Ackland, G. (2010) Controlling Radiation Damage. Science, 327, 1587-1588.
https://doi.org/10.1126/science.1188088

[34] Yutani, K., Kishimoto, H., Kasada, R. and Kimura, A. (2007) Evaluation of Helium Effects on Swelling Behavior of Oxide Dispersion Strengthened Ferritic Steels under Ion Irradiation. Journal of Nuclear Materials, 367-370, 423-427.
https://doi.org/10.1016/j.jnucmat.2007.03.016

[35] Zhang, C.H., Yang, Y.T., Song, Y., Chen, J., Zhang, L.Q., Jang, J. and Kimura, A. (2014) Irradiation Response of ODS Ferritic Steels to High-energy Ne Ions at HIRFL. Journal of Nuclear Materials, 455, 61-67.
https://doi.org/10.1016/j.jnucmat.2014.04.015

[36] Kishimoto, H., Yutani, K., Kasada, R., Hashitomi, O. and Kimura, A. (2007) Heavy-Ion Irradiation Effects on the Morphology of Complex Oxide Particles in Oxide Dispersion Strengthened Ferritic Steels. Journal of Nuclear Materials, 367-370, 179-184.
https://doi.org/10.1016/j.jnucmat.2007.03.149

[37] Ukai, S. and Fujiwara, M. (2002) Perspective of ODS Alloys Application in Nuclear Environments. Journal of Nuclear Materials, 307-311, 749-757.
https://doi.org/10.1016/S0022-3115(02)01043-7

[38] Ohtsuka, S., Kaito, T., Ukai, S., Inoue, M., Okuda, T. and Kimura, A. (2013) High Temperature Reaction Tests between High-Cr ODS Ferritic Steels and U-Zr Metallic Fuel. Journal of Nuclear Materials, 441, 286-292.
https://doi.org/10.1016/j.jnucmat.2013.06.002

[39] Han, W., Yabuuchi, K., Kimura, A., et al. (2016) Effect of Cr/Al Contents on the 475˚C Age-Hardening in Oxide Dispersion Strengthened Ferritic Steels. Nuclear Materials and Energy, 9, 610-615.
https://doi.org/10.1016/j.nme.2016.05.015

[40] Chen, D., Kimura, A., Han, W., et al. (2015) Age-Hardening Susceptibility of High-Cr ODS Ferritic Steels and SUS430 Ferritic Steel. Fusion Engineering and Design, 98, 1945-1949.
https://doi.org/10.1016/j.fusengdes.2015.05.078

[41] Kobayashi, S. and Takasugi, T. (2010) Mapping of 475˚C Embrittlement in Ferritic Fe-Cr-Al Alloys. Scripta Materialia, 63, 1104-1107.
https://doi.org/10.1016/j.scriptamat.2010.08.015

[42] Li, W., Lu, S., Hu, Q.M., et al. (2013) The Effect of Al on the 475°C Embrittlement of Fe-Cr Alloys. Computational Materials Science, 74, 101-106.
https://doi.org/10.1016/j.commatsci.2013.03.021

[43] Ejenstam, J., Thuvander, M., Olsson, P., Rave, F. and Sza-kalos, P. (2015) Microstructural Stability of Fe-Cr-Al Alloys at 450-550˚C. Journal of Nuclear Materials, 457, 291-297.
https://doi.org/10.1016/j.jnucmat.2014.11.101

[44] Field, K.G., Hu, X., Littrell, K.C., et al. (2015) Radiation Tolerance of Neutron-Irradiated Model Fe-Cr-Al Alloys. Journal of Nuclear Materials, 465, 746-755.
https://doi.org/10.1016/j.jnucmat.2015.06.023

[45] Edmondson, P.D., Briggs, S.A., Yamamoto, Y., et al. (2016) Irradiation-Enhanced α′ Precipitation in Model FeCrAl Alloys. Scripta Materialia, 116, 112-116.
https://doi.org/10.1016/j.scriptamat.2016.02.002

[46] Briggs, S.A., Edmondson, P.D., Littrell, K.C., et al. (2017) A Combined APT and SANS Investigation of α′ Phase Precipitation in Neutron-Irradiated Model FeCrAl Alloys. Acta Materialia, 129, 217-228.
https://doi.org/10.1016/j.actamat.2017.02.077

[47] Field, K.G., Briggs, S.A., Sridharan, K., Howard, R.H. and Yamamoto, Y. (2017) Mechanical Properties of Neutron-irradiated Model and Commercial FeCrAl Alloys. Journal of Nuclear Materials, 489, 118-128.
https://doi.org/10.1016/j.jnucmat.2017.03.038

[48] Read, H.G. and Murakami, H. (1996) Microstructural Influ-ences on the Decomposition of an Al-Containing Ferritic Stainless Steel. Applied Surface Science, 94-95, 334-342.
https://doi.org/10.1016/0169-4332(95)00524-2

[49] Read, H.G., Murakami, H. and Hono, K. (1997) Al Parti-tioning in MA 956, an ODS Ferritic Stainless Steel. Scripta Materialia, 36, 355-361.
https://doi.org/10.1016/S1359-6462(96)00388-0

[50] Capdevila, C., Miller, M.K., Russell, K.F., et al., (2008) Phase Separation in PM 2000™ Fe-Base ODS Alloy: Experimental Study at the Atomic Level. Materials Science and Engineering A, 490, 277-288.
https://doi.org/10.1016/j.msea.2008.01.029

[51] Capdevila, C., Miller, M.K. and Russell, K.F. (2008) Aluminum Partitioning during Phase Separation in Fe-20% Cr-6% Al ODS Alloy. Journal of Materials Science, 43, 3889-3893.
https://doi.org/10.1007/s10853-007-2228-z

[52] Capdevila, C., Aranda, M.M., Rementeria, R., et al. (2016) Strengthening by Intermetallic Nanoprecipitation in Fe-Cr-Al-Ti Alloy. Acta Materialia, 107, 27-37.
https://doi.org/10.1016/j.actamat.2016.01.039

[53] Chao, J., Capdevila, C., Serrano, M., et al. (2014) Effect of α-α′ Phase Separation on Notch Impact Behavior of Oxide Dispersion Strengthened (ODS) Fe20Cr5Al Alloy. Materials & Design, 53, 1037-1046.
https://doi.org/10.1016/j.matdes.2013.08.007

[54] Capdevila, C., Miller, M.K. and Chao, J. (2012) Phase Separa-tion Kinetics in a Fe-Cr-Al Alloy. Acta Materialia, 60, 4673-4684.
https://doi.org/10.1016/j.actamat.2012.05.022

[55] Chao, J., González-Carrasco, J.L. and Capdevila, C. (2007) Influence of Annealing at 1100˚C and 475˚C on the Mechanical Properties at Room Temperature of an Iron Base ODS Alloy. ISIJ International, 47, 1214-1220.
https://doi.org/10.2355/isijinternational.47.1214

[56] Field, K.G., Littrell, K.C. and Briggs, S.A. (2018) Precipita-tion of α′ in Neutron Irradiated Commercial FeCrAl Alloys. Scripta Materialia, 142, 41-45.
https://doi.org/10.1016/j.scriptamat.2017.08.022

[57] Chao, J. and Gonzalez-Carrasco, J.L. (2004) On the Dif-ferences of the 475˚C Age Hardening between As-Hot Rolled and Recrystallised MA956 Alloy. Scripta Materialia, 50, 1457-1460.
https://doi.org/10.1016/j.scriptamat.2004.03.006

[58] Capdevila, C., Miller, M.K., Toda, I., et al. (2010) Influence of the α-α′ Phase Separation on the Tensile Properties of Fe-base ODS PM 2000 Alloy. Materials Science and Engineering: A, 527, 7931-7938.
https://doi.org/10.1016/j.msea.2010.08.083

[59] Capdevila, C., Aranda, M.M., Rementeria, R., et al. (2016) Influence of Nanovoids on α-α′ Phase Separation in FeCrAl Oxide Dispersion Strengthened Alloy. Scripta Materialia, 110, 53-56.
https://doi.org/10.1016/j.scriptamat.2015.07.044

[60] Chao, J. and González-Carrasco, J.L. (2002) The Influence of Processing on the 475˚C Hardening of MA 956 Alloy. Scripta Materialia, 47, 423-428.
https://doi.org/10.1016/S1359-6462(02)00168-9

[61] Williams, D.B. and Carter, C.B. (2009) Transmission Electron Microscopy—A Textbook for Materials Science. 2nd Edition, Springer, New York.

[62] Miller, M.K. (2013) Atom-Probe Tomography: The Local Electrode Atom Probe. Microscopy & Microanalysis, 10, 1-423.

分享
Top