﻿ 约束条件对连续梁桥支吊架管道地震影响分析

# 约束条件对连续梁桥支吊架管道地震影响分析Analysis of Influence of Constraints on Seismic Effect of Suspension Pipes of Continuous Beam Bridge

Abstract: This paper analyzes whether or not the lateral hanger is set under the action of earthquake by us-ing the Midas finite element time history analysis software. Limiting the lateral restraint is much less than the seismic effect of the hangers in the case of unconstrained lateral restraints. Properly setting the lateral restraint is of great significance for the piping support and hanger.

1. 引言

2. 模型概况

40 + 56 + 40 m连续梁桥侧下方随桥敷设支吊架管道，支吊架用C10槽钢简化代替，支吊架通过受拉对管道起拉吊作用，主体桥梁的阻尼比取0.05，附属支吊架管道系统取0.02；管道的外径300 mm，壁厚8 mm，管道材料为Q235，支吊架高度为0.7 m，支吊架管道总长度136 m，支吊架6 m布置一个，总共24个，桥梁跨中间布置间距为4 m，桥边跨支吊架为三平动方向约束，对比不同的支吊架约束分析情况为：

1) 支吊架仅受竖向约束；

2) 桥中跨管道位置、桥边跨管道位置、边跨1/2管道位置、边跨3/4管道位置、中墩管道位置以及桥跨中管道位置支吊架为限制横向和竖向约束，其他位置支吊架限制竖向约束(图1图2)。

3. 支吊架管道系统动力特性分析

Figure 1. The continuous modeling of pipe bridge models

Figure 2. The pipeline of Continuous beam bridge part model

Table 1. Hanger pipe system natural frequency

4. 连续梁桥支吊架管道时程分析

(a) (b) (c) (d) (e) (f)

Figure 3. Contrast and unconstrained vibration mode diagrams of hanger piping system

Figure 4. Five acceleration response curves of pipes for hangers with restricted constraints (220 cm/s2)

Figure 5. Five displacement response curves of pipes for hangers with restricted constraints (220 cm/s2)

Figure 6. Five acceleration response curves of pipes for hangers without restricted constraints (220 cm/s2)

Figure 7. Five displacement response curves of pipes for hangers without restricted constraints (220 cm/s2)

Table 2. Dynamic moment coefficient of moment

Table 3. Stress at different locations of the pipeline under earthquake (Mpa)

Table 4. Stress of different positions of support and hanger under earthquake (Mpa)

5. 结论

[1] 刘国印, 张兰青. 管道支吊架设计及注意事项[J]. 价值工程, 2010, 29(19): 83-84.

[2] 张茂盛. 工业系统管道支架的整体分析[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2011.

[3] 蔡尔辅. 石油化工管线设计[M]. 北京: 化学工业出版社, 1986.

[4] 简明动力管道手册编写组. 简明动力管道手册[M]. 北京: 机械工业出版社, 1998.

[5] Zaghi, A.E., Maragakis, E.M., Itani, A., et al. (2012) Experimental and Analytical Studies of Hospital Piping Assemblies Subjected to Seismic Loading. Earthquake Spectra, 28, 367-384.
https://doi.org/10.1193/1.3672911

[6] Filiatrault, A., Mosqueda, G., Retamales, R., et al. (2010) Experimental Seismic Fragility of Steel Studded Gypsum Partition Walls and Fire Sprinkler Piping Sub-Systems. In: Senapathi, S., Casey, K. and Hoit, M., Eds., Structures Congress 2010, ASCE, Reston, Virginia, 2633-2644.

Top