Baskakov-Kantorovich算子在紧圆盘上的同时逼近性质
Simultaneous Approximation Properties of Complex Baskakov-Kantorovich Operators in Compact Disks

作者: 李文霞 * , 齐秋兰 :河北师范大学数学与信息科学学院,河北 石家庄;

关键词: Baskakov-Kantorovich算子同时逼近Voronovskaja型结果Baskakov-Kantorovich Operators Simultaneous Approximation Voronovskaja-Type Results

摘要:
本文根据Baskakov-Kantorovich算子在复空间的定义及性质研究Baskakov-Kantorovich算子在复空间的逼近性质,得到了Baskakov-Kantorovich算子在紧圆盘上的同时逼近性质。

Abstract: In this paper, the approximation properties of the Baskakov-Kantorovich operators in the complex space are studied according to the definition and properties of the operator in the complex space. We obtain the simultaneous approximation order for complex Baskakov-Kantorovich operators attached to entire functions or to analytic functions in compact disks.

1. 引言

在复空间C上,令 D R : = { z C : | z | < R , R > 1 } H ( D R ) 表示 D R 上解析函数空间。

函数 f : [ R , + ) D R ¯ C [ R , + ) D R ¯ 上连续,在 D R 上解析。若 f H ( D R ) ,对所有的 z D R ,有 f ( z ) = m = 0 a m z m ,其中 f r = sup { | f ( z ) | : | z | r } 。则复的改进的Baskakov-Kantorovich型算子的定义为:

K n ( f , z ) = j = 0 v n , j ( z ) 0 1 f ( j + t n + 1 ) d t ,

其中

v n , j ( z ) = ( n + j 1 j ) z j ( 1 + z ) n j . [1] - [10]

引理1.1 [11] :[Cauchy积分公式]设区域D的边界是周线(或复周线) C,函数 f ( z ) 在D内解析,在 D ¯ = D + C 上连续,则有

f ( z ) = 1 2 π i c f ( ξ ) ξ z d ξ ( z D ) .

引理1.2 [11] :[泰勒展式]设 f ( z ) 在区域D内解析, a D ,只要圆 L : | z a | < R 含于D,则 f ( z ) 在L内能展成幂级数

f ( z ) = n = 0 c n ( z a ) n ,

其中系数

c n = 1 2 π i τ ρ f ( ξ ) ( ξ a ) n + 1 d ξ = f ( n ) ( a ) n ! ,

( τ ρ : | ξ a | = ρ , 0 < ρ < R ; n = 0 , 1 , 2 , )

且展式是惟一的。

定理1.1:设 f H ( D R ) 且有界于 [ 0 , + ) f ( z ) = m = 0 a m z m , z D R ,若 1 r < r 1 < R 2 ,对任意 | z | r , z 1 以及 n , p N ,有

| K n ( p ) ( f , z ) f ( p ) ( z ) | p ! r 1 C r 1 ( f ) n ( r 1 r ) p + 1 ,

其中

C r 1 ( f ) = 3 2 m = 1 | a m | m ( m + 1 ) ( m + 1 ) ! ( 2 r 1 ) m < + .

定理1.2:设 f H ( D R ) 且有界于 [ 0 , + ) f ( z ) = m = 0 a m z m , z D R ,若 1 r < r 1 < R 2 ,对任意 | z | r , z 1 以及 n , p N ,假设f在 D R 上不是阶小于等于 max { 1 , p 1 } 的多项式,当引理2.2中级数收敛时,有

K n ( p ) ( f , z ) f ( p ) ( z ) r 1 n B r 1 ( f ) ,

其中 B r 1 ( f ) 依赖于f和 r , r 1 ,但 n , p 与无关。

推论:设 f H ( D R ) 且有界于 [ 0 , + ) f ( z ) = m = 0 a m z m , z D R ,若 1 r < r 1 < R 2 ,对任意 | z | r , z 1 以及 n , p N ,假设f在 D R 上不是阶小于等于 max { 1 , p 1 } 的多项式,当引理2.2中级数收敛时,有

K n ( p ) ( f , z ) f ( p ) ( z ) r ~ 1 n N r 1 ( f ) ,

其中 N r 1 ( f ) 依赖于f和 r , r 1 ,但 n , p 与无关。

注:本文C表示不依赖于x或者z与n的常数,不同地方代表不同数值。

2. 重要引理

引理2.1 [12] :设 f H ( D R ) 且有界于 [ 0 , + ) f ( z ) = m = 0 a m z m , z D R ,若 1 r < R 2 ,对任意 | z | r , z 1 以及 n N ,有

| V n ( f , z ) f ( z ) | 3 2 n m = 1 | a m | m ( m + 1 ) ( m + 1 ) ! ( 2 r ) m ,

其中

C r ( f ) = 3 2 m = 1 | a m | m ( m + 1 ) ( m + 1 ) ! ( 2 r ) m < + .

引理2.2 [12] :设 f H ( D R ) 且有界于 [ 0 , + ) f ( z ) = m = 0 a m z m , z D R ,若 1 r < R 2 ,对任意 | z | r , z 1 以及 n N ,有

| V n ( f , z ) f ( z ) 1 2 z 2 ( n + 1 ) f z ( 1 + z ) 2 ( n + 1 ) f ( z ) | 11 n 2 m = 2 | a m | m ( m 1 ) 2 ( m + 1 ) ! ( 2 r ) m ,

其中

A r ( f ) = 11 m = 2 | a m | m ( m 1 ) 2 ( m + 1 ) ! ( 2 r ) m < + .

引理2.3 [12] :设 f H ( D R ) 且有界于 [ 0 , + ) f ( z ) = m = 0 a m z m , z D R ,若 1 r < R 2 ,对任意 | z | r , z 1 以及 n N ,有

V n ( f ) f 1 n B r ( f ) ,

其中 B r ( f ) 依赖于f和r,但与n无关。

3. 定理的证明

定理1.1的证明

证明:令 γ 是以 O 为圆心,半径 r 1 > 1 的圆,对任意 | z | r , z 1 v γ ,此时, | v z | r 1 r ,由高阶Cauchy积分公式得

| K n ( p ) ( f , z ) f ( p ) ( z ) | = p ! | γ K n ( f , v ) f ( v ) ( v z ) p + 1 d v | C r 1 ( f ) n p ! 2 π r 1 ( r 1 r ) p + 1 = p ! r 1 C r 1 ( f ) n ( r 1 r ) p + 1 .

命题得证。

定理1.2的证明

证明:对所有的 v γ n N ,有

K n ( f , v ) f ( v ) = 1 n { 1 2 v 2 ( n + 1 ) f ( v ) + v ( 1 + v ) 2 ( n + 1 ) f ( v ) + 1 n [ n 2 ( K n ( f , v ) f ( v ) 1 2 v 2 ( n + 1 ) f ( v ) v ( 1 + v ) 2 ( n + 1 ) f ( v ) ) ] }

运用高阶Cauchy积分公式,可得:

K n ( p ) ( f , z ) f ( p ) ( z ) = 1 n { p ! 2 π i γ ( 1 2 v ) f ( v ) 2 ( v z ) p + 1 d v + γ v ( 1 + v ) f ( v ) 2 ( v z ) p + 1 d v + 1 n p ! 2 π i γ n 2 [ ( K n ( f , v ) f ( v ) 1 2 v 2 ( n + 1 ) f ( v ) v ( 1 + v ) 2 ( n + 1 ) f ( v ) ) ] ( v z ) p + 1 d v } = 1 n { [ ( 1 2 z ) 2 f ( z ) ] ( p ) + [ z ( 1 + z ) 2 f ( z ) ] ( p ) + 1 n p ! 2 π i γ n 2 [ ( K n ( f , v ) f ( v ) 1 2 v 2 ( n + 1 ) f ( v ) v ( 1 + v ) 2 ( n + 1 ) f ( v ) ) ] ( v z ) p + 1 d v }

所以对所有的 | z | r , z 1 n , p N ,有

| K n ( p ) ( f , z ) f ( p ) ( z ) | 1 n { | [ ( 1 2 z ) 2 f ( z ) ] ( p ) + [ z ( 1 + z ) 2 f ( z ) ] ( p ) | 1 n | p ! 2 π i γ n 2 [ ( K n ( f , v ) f ( v ) ( 1 2 v ) 2 ( n + 1 ) f ( v ) v ( 1 + v ) 2 ( n + 1 ) f ( v ) ) ] ( v z ) p + 1 d v | } ,

由引理2.2,对所有的 | z | r , z 1 n , p N ,有

| p ! 2 π i γ n 2 [ ( K n ( f , v ) f ( v ) 1 2 v 2 ( n + 1 ) f ( v ) v ( 1 + v ) 2 ( n + 1 ) f ( v ) ) ] ( v z ) p + 1 d v | p ! 2 π i 2 π r 1 n 2 ( r 1 r ) p + 1 11 n 2 m = 2 | a m | m ( m 1 ) 2 ( m + 1 ) ! ( 2 r ) m 11 p ! r 1 ( r 1 r ) p + 1 m = 2 | a m | m ( m 1 ) 2 ( m + 1 ) ! ( 2 r ) m .

由f的假设条件,知 ( 1 2 z 2 f ( z ) + z ( 1 + z ) 2 f ( z ) ) ( p ) r > 0 。事实上,若否,则任意 z D r ¯ ,有 ( 1 2 z ) f ( z ) + z ( 1 + z ) f ( z ) = Q p 1 ( z ) ,其中 Q p 1 ( z ) 为阶小于等于 p 1 的多项式,故 Q p 1 ( z ) = j = 1 p 1 A j z j 。令 f ( z ) = g ( z ) ,对任意 z D r ¯ ,有 ( 1 2 z ) g ( z ) + z ( 1 + z ) g ( z ) = Q p 1 ( z ) ,由于 g ( z ) 解析,令 g ( z ) = j = 0 α j z j 代入上述微分方程,比较系数可知: g ( z ) 为阶小于等于 p 2 的多项式,故 f ( z ) 为阶小于等于 p 1 的多项式,与假设矛盾。令 C 0 = ( 1 2 z 2 f ( z ) + z ( 1 + z ) 2 f ( z ) ) ( p ) r ,参照引理2.3证明过程(参见文献 [12] ),可以得到定理1.2。即存在一个整数 n 0 N 取决于 f , r , r 1 p ,使得 n n 0 ,有 K n ( p ) ( f , z ) f ( p ) ( z ) r 1 n C 0 2 。当 n { 1 , 2 , , n 0 1 } 时类似可证。

基金项目

国家自然科学基金(10571040)。

文章引用: 李文霞 , 齐秋兰 (2018) Baskakov-Kantorovich算子在紧圆盘上的同时逼近性质。 理论数学, 8, 259-264. doi: 10.12677/PM.2018.83033

参考文献

[1] Ditzian, Z. and Totik, V. (1987) Modulus of Smoothness. Springer-Verlag, Berlin/New York.
https://doi.org/10.1007/978-1-4612-4778-4

[2] Guo, S. and Qi, Q. (2003) Strong Converse Inequalities for Baskakov Opera-tors. Journal of Approximation Theory, 124, 219-231.
https://doi.org/10.1016/S0021-9045(03)00119-9

[3] Ispir, N. (2007) Rate of Convergence of Generalized Rational Type Baskakov Operators. Mathematical and Computer Modelling, 46, 625-631.
https://doi.org/10.1016/j.mcm.2006.11.025

[4] Govil, N.K. and Gupta, V. (2008) Convergence Rate for Generalized Baskakov Type Operators. Nonlinear Analysis, 69, 3795-3801.
https://doi.org/10.1016/j.na.2007.10.015

[5] Gal, S.G. (2009) Ap-proximation by Complex Bernstein and Convolution-Type Operators. World Scientific Publ Co., Singapore, Hong Kong, London, New Jersey.
https://doi.org/10.1142/7426

[6] Mahmudov, N.I. and Kara, M. (2013) Approximation Theorems for Complex Szász-Kantorovich Operators. Journal of Computational Analysis and Applications, 15, 32-38.

[7] Gal, S.G. and Opris, B.D. (2015) Approximation with an Arbitrary Order by Modified Baskakov-Type Operators. Applied Mathematics and Computation, 265, 329-332.
https://doi.org/10.1016/j.amc.2015.05.034

[8] Gal, S.G. and Opris, B.D. (2016) Approximation of Analytic Functions with an Arbitrary Order by Generalized Baskakov-Faber Operators in Compact Sets. Complex Analysis and Operator Theory, 10, 369-377.
https://doi.org/10.1007/s11785-015-0467-6

[9] Gal, S.G., Mahmudov, N.I. and Opris, B.D. (2016) Approximation with an Arbitrary Order by Szász-Kantorovich and Baskakov Complex Operators in Compact Disks. Azerbaijan Journal of Mathematics, 6, 3-12.

[10] Gal, S.G. and Gupta, V. (2014) Approximation by Complex Szasz-Durrmeyer Operators in Compact Disks. Acta Mathe-matica Scientia, 34B, 1157-1165.
https://doi.org/10.1016/S0252-9602(14)60076-X

[11] 钟玉泉. 复变函数论[M]. 第三版. 北京: 高等教育出版社, 2004.

[12] 李文霞, 齐秋兰. Baskakov-Kantorovich型算子在紧圆盘上的逼近性质[J]. 数学物理学报, 2018, 38A(4).

分享
Top