﻿ 稳态模型和混合模型在连锁故障预测中的适用性分析

# 稳态模型和混合模型在连锁故障预测中的适用性分析Feasibility Analysis on Forecast of Cascading Failures Based on Steady Model and Hybrid Model

Abstract: The commonly used simulation models of cascading failure contain DC power flow steady model (DC-SM), AC power flow steady model (AC-SM), transient model (TM) and hybrid model (HM). Taken TM as a reference model, the consistency and difference of the models are compared in the simulation of cascading failures, and cascading failure propagation stage is divided into slow successive break stage and fast successive break stage, and the feasibility of SM and HM at different stages is analyzed. Firstly, taken the IEEE 39-bus system as an example, by comparing the simulation results of DC-SM, AC-SM and TM, the influence of the bus voltage and generator power angle on the simulation results is analyzed, and the effectiveness of SM in the slow successive break phase is verified. Finally, aiming at the problem of SM in the simulation of cascading failures, the simulation results of HM and TM in the fast successive break stage are compared, and the effectiveness of HM in the fast successive break phase is verified.

1. 引言

2. 基于稳态模型的连锁故障搜索流程

2.1. 预测初始故障的选取

2.2. 基于过负荷保护的线路开断

${O}_{j}\left(t,\Delta t\right)=\left\{\begin{array}{cc}{\int }_{t}^{t+\Delta t}\left({F}_{j}\left(t\right)-{C}_{j}\right)dt& {F}_{j}\left(t\right)>{C}_{j}\\ 0& 其它\end{array}$ (1)

2.3. 功率平衡控制

3. 不同仿真模型的对比分析

${P}_{ij}={V}_{i}{V}_{j}\left({G}_{ij}\mathrm{cos}{\theta }_{ij}+{B}_{ij}\mathrm{sin}{\theta }_{ij}\right)-{V}_{i}^{2}{G}_{ij}$ (2)

Figure 1. Flowchart of forecasting based on steady model

${P}_{ij}=\frac{\left({\theta }_{i}-{\theta }_{j}\right)}{{x}_{ij}}$ (3)

4. 算例

4.1. 基于SM和TM的连锁故障仿真对比

Table 1. Cascading failure paths based on DC-SM

Figure 2. Distribution of power flow in different stages of cascading failure path1

Figure 3. Bus voltage in cascading failure path 1

Table 2. Distribution of power flow in cascading failure path2 after line 25 is outage

4.2. 基于HM和TM的连锁故障仿真对比

Figure 4. The maximum relative power angle in cascading failure path 2

Figure 5. Bus voltage in cascading failure path 2

Figure 6. The relationship between HM and TM, SM

Figure 7. Distribution of power flow in different stages of cascading failure path based on HM and TM

5. 结论

[1] 印永华, 郭剑波, 赵建军, 卜广全. 美加“8.14”大停电事故初步分析以及应吸取的教训[J]. 电网技术, 2003, 27(10): 8-11.

[2] 梁志峰, 葛睿, 董昱, 陈刚. 印度“7.30”、“7.31”大停电事故分析及对我国电网调度运行工作的启示[J]. 电网技术, 2013, 37(7): 1841-1848.

[3] 葛睿, 董昱, 吕跃春. 欧洲“11.4”大停电事故分析及对我国电网运行工作的启示[J]. 电网技术, 2007, 31(3): 1-6.

[4] Kirschen, D., Jayaweera, D., Nedic, D. and Allan, R. (2004) A Probabilistic Indicator of System Stress. IEEE Transactions on Power Systems, 19, 1650-1657.
https://doi.org/10.1109/TPWRS.2004.831665

[5] Rios, M., Kirschen, D., Jayaweera, D., Nedic, D. and Allan, R. (2002) Value of Security: Modeling Time-Dependent Phenomena and Weather Conditions. IEEE Transactions on Power Systems, 17, 543-548.
https://doi.org/10.1109/TPWRS.2002.800872

[6] Dobson, I., Carreras, B., Lynch, V. and Newman, D. (2001) An Initial Model of Complex Dynamics in Electric Power System Blackouts. System Sciences, 710-718.

[7] Mei, S., He, F., Zhang, X., Wu, S. and Wang, G. (2009) An Improved Opa Model and Blackout Risk Assessment. IEEE Trans-actions on Power Systems, 24, 814-823.
https://doi.org/10.1109/TPWRS.2009.2016521

[8] 吴文可, 文福栓, 薛禹胜, 等. 基于马尔科夫链的电力系统连锁故障预测[J]. 电力系统自动化, 2013, 37(5): 29-37.

[9] 丁明, 肖遥, 张晶晶, 何剑. 基于事故链及动态故障树的电网连锁故障风险评估模型[J]. 中国电机工程学报, 2015, 35(4): 821-829.

[10] 马志远, 石立宝, 姚良忠, 倪以信. 电网连锁故障的事故链搜索模型及策略[J]. 中国电机工程学报, 2015, 35(13): 3292-3302.

[11] 赵晋泉, 叶君玲, 邓勇. 直流潮流与交流潮流的对比分析[J]. 电网技术, 2012, 36(10): 147-152.

[12] 于洋, 黄民翔, 辛焕海, 甘德强, 等. 基于动态仿真的连锁故障分析[J]. 电力系统自动化, 2008, 32(20): 15-21.

[13] 汤涌, 宋新立, 刘文焯, 周孝信. 电力系统全过程动态仿真的数值方法——电力系统全过程动态仿真软件开发之一[J]. 电网技术, 2002, 26(9): 8-12.

[14] 邓慧琼, 艾欣, 张东英, 等. 基于不确定多属性决策理论的电网连锁故障模式搜索方法[J]. 电网技术, 2005, 29(13): 50-55.

[15] 李生虎, 丁明, 王敏, 等. 考虑故障不确定性和保护动作性能的电网连锁故障模式搜索[J]. 电网技术, 2004, 28(13): 27-31.

[16] Henneaux, P., Labeau, P.E. and Maun, J.C. (2012) A Level-1 Probabilistic Risk Assessment to Blackout Hazard in Transmission Pow-er Systems. Reliability Engineering & System Safety, 102, 41-52.
https://doi.org/10.1016/j.ress.2012.02.007

[17] Henneaux, P., Labeau, P.E. and Maun, J.C. (2013) Blackout Prob-abilistic Risk Assessment and Thermal Effects: Impacts of Changes in Generation. IEEE Transactions on Power Systems, 28, 4722-4731.
https://doi.org/10.1109/TPWRS.2013.2263851

[18] Henneaux, P., Labeau, P.E. and Maun, J.C., et al. (2016) A Two-Level Probabilistic Risk Assessment of Cascading Outages. IEEE Transactions on Power Systems, 31, 2393-2403.
https://doi.org/10.1109/TPWRS.2015.2439214

[19] Yan, J., Tang, Y., He, H. and Sun, Y. (2015) Cascading Fail-ure Analysis with DC Power Flow Model and Transient Stability Analysis. IEEE Transactions on Power Systems, 30, 285-297.
https://doi.org/10.1109/TPWRS.2014.2322082

[20] Eppstein, M. and Hines, P. (2012) A “Random Chemistry” Algorithm for Identifying Collections of Multiple Contingencies That Initiate Cascading Failure. IEEE Transactions on Power Systems, 27, 1698-1705.
https://doi.org/10.1109/TPWRS.2012.2183624

[21] 蔡伟国, 穆钢, K. W. Chan, 卢芳. 基于网络信息的暂态稳定性定量分析——支路势能法[J]. 中国电机工程学报, 2004, 24(5): 1-6.

Top