﻿ 大学生统计课程学习态度的结构方程模型

# 大学生统计课程学习态度的结构方程模型Structural Equation Modeling on Students’ Attitude towards Statistics

Abstract: Learning attitude helps regulate learning behaviors, and has a direct influence on learning effi-ciency and learning effect. Based on the field research data of college students in a university of finance and economics, this paper constructs a structural equation model to measure students’ attitude towards learning statistics, using the SATS questionnaire. We aim to explore the rela-tionship between students’ learning attitude towards statistics, their expected achievements on statistics, and their mathematical ability. According to the results, students have a positive atti-tude towards statistics, but deem it difficult to learn the course. Besides, students’ mathematical ability significantly affects their attitude towards statistics. Last but not least, both learning atti-tude and mathematical ability have a significantly positive influence on the expected achieve-ments on statistics, and the mathematical ability contributes more. Accordingly, it needs to help students to overcome their fears of difficulties and to enhance their interests in learning statis-tics. Also, it is important to correct students’ bad feelings towards math at an early stage.

1. 引言

“学习态度”是不可直接观测的，需通过量表进行测量。迄今为止，关于统计课程学习态度的量表已有十余种，其中SATS量表(Survey of Attitudes Toward Statistics)被国外学者普遍采用 [9] [10] 。该量表由Schau在1995年提出，最初只有28个测量条目(称为SATS-28 [11] )，后来增添至36个测量条目(称为SATS-36 [12] )。本文将结合SATS量表设计问卷，对某财经高校的大学生开展实地调研，测量其对统计课程的学习态度，通过基于项目打包法和高阶因子的结构方程构建学习态度模型，从而对大学生的统计课程学习态度建立整体认识，研究大学生的统计课程学习态度与数学能力、预期掌握程度之间的影响路径和影响强度。本文的研究结论预期对统计课程的教学活动起到指导作用。

2. 测量工具与模型

2.1. SATS量表

Table 1. Eight latent factors

2.2. 结构方程模型建构

2.2.1. 结构方程模型

$x={\Lambda }_{x}\xi +\delta$ ,(1)

$y={\Lambda }_{y}\eta +\epsilon$ . (2)

$\eta =Β\eta +\Gamma \xi +\zeta$ . (3)

2.2.2. 高阶验证性因子分析

$y={\Lambda }_{y}\eta +\epsilon$ , (4)

$\eta =Β\eta +\Gamma \xi +\zeta$ .(5)

2.2.3. 项目组合法

2.2.4. 本文的理论模型与研究假设

H1：“态度”正向影响“预期掌握程度”。

H2：“数学能力”正向影响“预期掌握程度”。

H3：“数学能力”正向影响“态度”。

3. 数据分析与模型检验

3.1. 调查方法与样本

3.2. 描述分析

Figure 1. Theoretical model of attitude, mathematical ability and expected mastery degree

Table 2. Descriptive analysis on latent factors

3.3. 验证性因子分析

3.3.1. 拟合指数

Table 3. Fitting indexes of measurement model

Table 4. Estimations of confirmative factor analysis

3.3.2. 信度和效度检验

3.4. 模型检验与分析

Table 5. Results of reliability test and validity test

Table 6. Fitting indexes of structural equation model

Table 7. Estimation of structural equation model

4. 结论与建议

NOTES

1六个一阶因子对应的测量问项均进行了正向化处理，以使得取平均得到的因子均值有意义。需要注意的是，难度因子的取值越大，表示学生认为统计课程的学习越为简单。

[1] 教育部统计学类专业教学指导委员会. 我国统计学类专业本科教育现状的调查与分析[J]. 统计研究, 2015, 32(2): 104-108.

[2] 郭栋. 就业视角下的统计学专业人才培养与教学改革研究[J]. 统计与信息论坛, 2017, 32(11): 127-128.

[3] Schau, C. and Emmioglu, E. (2012) Do Introductory Statistics Courses in the United States Improve Students’ Attitudes? Statistics Education Research Journal, 11, 86-94.

[4] Liau, A.K., Kiat, J.E. and Nie, Y. (2015) Investigating the Pedagogical Approaches Related to Changes in Attitudes toward Statistics in a Quantitative Methods Course for Psychology Undergraduate Students. The Asia-Pacific Education Researcher, 24, 1-9.
https://doi.org/10.1007/s40299-014-0182-5

[5] Robson, A. (2016) Students’ Perceptions of Computer-Based Learning Envi-ronments, Their Attitude towards Business Statistics, and Their Academic Achievement: Implications from a UK University. Studies in Higher Education, 41, 734-755.
https://doi.org/10.1080/03075079.2014.950562

[6] 王爱平, 车宏生. 学习焦虑、学习态度和投入动机与学业成绩关系的研究——关于《心理统计学》学习经验的调查[J]. 心理发展与教育, 2005, 21(1): 55-59.

[7] 王陵, 李婵娟, 夏结来, 尚磊, 徐勇勇, 李晨. 医学研究生对医学统计学的认知态度、教学感受和应用需求调查分析[J]. 中国卫生统计, 2015, 32(3): 396-400.

[8] 曹瑞, 于川, 于永东. 高中生数学学习态度量表的修订及初步运用[J]. 数学教育学报, 2015, 24(6): 57-60.

[9] Ramirez, C., Schau, C. and Emmioglu, E. (2012) The Importance of Attitudes in Statistics Education. Statistics Education Research Journal, 11, 57-71.

[10] Nolan, M.M., Beran, T. and Hecker, K.G. (2012) Surveys Assessing Students’ Attitudes toward Statistics: A Systematic Review of Validity and Reliability. Statistics Education Research Journal, 11, 103-123.

[11] Schau, C., Stevens, J., Dauphinee, T.L. and Vecchio, A.D. (1995) The Development and Validation of the Survey of Attitudes toward Statistics. Educational and Psychological Measurement, 55, 868-875.
https://doi.org/10.1177/0013164495055005022

[12] Schau, C. (2003) Students’ Attitudes: The “Other” Important Outcome in Statistics Education. ASA Proceedings: The American Statistical Association Joints Statistical Meetings, American Statistical Association, Section on Statistical Education, 3673-3681.

[13] 侯杰泰, 温忠麟, 成子娟. 结构方程模型及其应用[M]. 北京: 教育科学出版社, 2004.

[14] 邱皓政, 林碧芳. 结构方程模型的原理与应用[M]. 北京: 中国轻工业出版社, 2009.

[15] 周小刚, 陈晓, 刘月梅, 范涛. “滴滴出行”服务质量对顾客满意度和忠诚度影响的实证研究[J]. 统计与信息论坛, 2017, 32(8): 117-122.

[16] 吴艳, 温忠麟. 结构方程建模中的题目打包策略[J]. 心理科学进展, 2011, 19(12): 1859-1867.

[17] 卞冉, 车宏生, 阳辉. 项目组合在结构方程模型中的应用[J]. 心理科学进展, 2007, 15(3): 567-576.

[18] 王若宾, 刘科成, 颜志军, 王秋明. 结构方程模型简化方法及在人机行为研究中的应用[J]. 数学的实践与认识, 2014, 44(3): 92-99.

Top