小麦胚与胚乳膜透性的比较研究
Comparing Embryo and Endosperm Membrane Permeability on Wheat (Triticum aestivum L.)

作者: 刘春香 * , 王正阳 , 徐亚飞 :潍坊学院,山东 潍坊;

关键词: 小麦吸胀胚乳膜透性Wheat Imbibition Embryo Endosperm Membrane Permeability

摘要:
干种子浸泡过程中会出现大量内含物外泄,外泄的量与种子活力存在明显的相关关系。为了探究干种子在浸泡过程中胚与胚乳对渗出物质的贡献率,本试验以邯郸6172和潍麦8号为材料,通过老化和去胚处理,检测单位时间内完整种子与去胚种子浸泡液的电导率和吸光度,以及干种子细胞对PI染料的透过程度来间接反应种子胚与胚乳的膜透过性。通过试验得出,小麦正常种子和胚乳的膜透性都是在吸胀第1 h渗透最快,之后缓慢增加。胚和胚乳在吸胀过程中电解质和有机物的渗出具有相似的趋势,活力低的胚渗出量远大于活力高胚的渗出量。组织学荧光观察显示,正常种子胚细胞膜透过性相对较低,胚外围组织及胚乳的透性高。活力显著下降的胚细胞膜透性明显增强。

Abstract: The dry seed will exclude a large amount of leakage during imbibitions, a significant correlation was found between the amount of leakage and seed vigor. Handan 6172 and Weimai 8 were used as materials, through artificial accelerated aging (AA), and de-embryonated treatment, to explore the difference of embryo and endosperm leakage by detection electrolyte conductivity, absorption of steeping solution and Propidium iodide (PI) permeability on dry seed slices. The result shows that seed steeping solution leaks rapidly at the first hour, then the amount of exudation increases slowly, both complete seeds and de-embryonated seeds. Embryo and endosperm has a similar leaking tendency. The amount of low vigor embryos exudation is much higher than that of high vigor embryo. The histological fluorescence observation shows that the membrane permeability of normal seed embryo cells is relatively lower, while the periphery tissue of embryo and endosperm is higher. Low viability embryo cells increase permeability significantly.

文章引用: 刘春香 , 王正阳 , 徐亚飞 (2018) 小麦胚与胚乳膜透性的比较研究。 农业科学, 8, 83-91. doi: 10.12677/HJAS.2018.81016

参考文献

[1] 胡晋. 种子生物学[M]. 北京: 高等教育出版社, 2006: 20-35.

[2] 胡晋. 种子检验学[M]. 北京: 科学出版社, 2015: 11-13, 105-109.

[3] Black, M., Corbineau, F., Gee, H., et al. (1999) Water Content, Raffinose, and Dehydrins in the Induction of Desiccation Tolerance in Immature Wheat Embryos. Plant Physiology, 120, 463-471.
https://doi.org/10.1104/pp.120.2.463

[4] Garcia, I.S., Souza, A., Barbedo, C.J., et al. (2006) Changes in Soluble Carbohydrates during Storage of Caesalpinia echinata LAM. (Brazilwood) Seeds, an Endangered Leguminous Tree from the Brazilian Atlantic Forest. Brazilian Journal of Biology, 66, 739-745.
https://doi.org/10.1590/S1519-69842006000400018

[5] Buitink, J., Leprince, O. and Hoekstra, F.A. (2000) Dehydra-tion-Induced Redistribution of Amphiphilic Molecules between Cytoplasm and Lipids Is Associated with Desiccation Tolerance in Seeds. Plant Physiology, 124, 1413-1425.
https://doi.org/10.1104/pp.124.3.1413

[6] Blackman, S.A., Obendorf, R.L. and Leopold, A.C. (1992) Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean Seeds. Plant Physiology, 100, 225-230.
https://doi.org/10.1104/pp.100.1.225

[7] Golovina, E.A., Hoekstra, F.A. and Hemminga, M.A. (1998) Drying Increases Intracellular Partitioning of Amphiphilic Substances into the Lipid Phase. Impact on Membrane Permeability and Significance for Desiccation Tolerance. Plant Physiology, 118, 975-986.
https://doi.org/10.1104/pp.118.3.975

[8] Senaranta, T., Mckersie, B.D., et al. (1984) Association between Membrane Phase Properties and Dehydration Injury in Soybean Axes. Plant Physiology, 76, 759-762.
https://doi.org/10.1104/pp.76.3.759

[9] Buitink, J., Claessens, M.M.A.E., Hemminga, M.A., et al. (1998) Influence of Water Content and Temperature on Molecular Mobility and Intracellular Glasses in Seeds and Pollen. Plant Physiology, 118, 531-541.
https://doi.org/10.1104/pp.118.2.531

[10] Bewley, J.D., Bradford, K.J., et al. (2013) Seeds: Physiology of Development, Germination and Dormancy. 3rd Edition, Springer, New York, 61-63.
https://doi.org/10.1007/978-1-4614-4693-4

[11] Mckerisie, B.D. and Stinson, R.H. (1980) Effect of Dehydration Treatment on Leakage and Membrane Structure in Lotus corniculatus L. Seeds. Plant Physiology, 66, 316-320.

[12] Duke, S.H., Kakefuda, G. and Harvey, T.M. (1983) Differential Leakage of Intracellular Substances from Imbibing Soybean Seeds. Plant Physiology, 72, 919-924.
https://doi.org/10.1104/pp.72.4.919

[13] Chen, W., Zhao, K. and Shang, J. (1992) Cellular Substance Exudation and Seed Vigour. Journal of Northeast Forestry University, 3, 37-41.

[14] 陈光仪, 傅家瑞. 花生种子活力与电导率的关系[J]. 种子, 1983(3): 16-20.

[15] Julia, B., Olivier, L. and Folkert, A. (2000) Seed Analysis. Molecular Methods of Plant Analysis (Book 14), Springer, Berlin, 273-304.

[16] 鲁黎明, 叶科媛, 安影, 等. 一种快速测定烟草种子活力的方法——紫外吸收分光光度法[J]. 种子, 2008(9): 115-117.

[17] Min, T.G. and Kang, W.S. (2011) A Simple, Quick and Nondestructive Method for Brassicaceae Seed Viability Measurement with Single Seed Base using Resazurin. Horticulture, Environment, and Biotechnology, 52, 240-245.
https://doi.org/10.1007/s13580-011-0182-9

[18] 张保恩, 黄学林, 黄上志. 不破坏种子的活力测定方法研究Ⅲ菜心种子活力和渗出物的关系种子吸胀期间的泄漏物与活力的关系[J]. 种子, 1999(3): 1-5, 17.

[19] 陈振德, 傅以彬. 小麦种子浸出液的化学成分及其与种子活力的关系[J]. 山东农业大学学报, 1988, 19(2): 81-84.

[20] Zhao, P., Zhu, Y. and Wang, W. (2010) Evaluation and Improvement of Spectrophotometric Assays of TTC Reduction: Maize (Zea mays) Embryo as an Example. Acta Physiologiae Plantarum, 32, 815-819.
https://doi.org/10.1007/s11738-009-0457-2

[21] 谌丽斌, 梁文艳, 曲久辉, 等. FDA-PI双色荧光法检测蓝藻细胞活性的研究[J]. 环境化学, 2005, 24(5): 554-557.

[22] 南京农业大学. 田间实验和统计方法(第二版)[M]. 北京: 农业出版社, 1993: 91-100.

[23] Stanley, H. (1981) Role of the Testa in Preventing Cellular Rupture during Imbibition of Legume Seeds. Plant Physiology, 67, 449-456.
https://doi.org/10.1104/pp.67.3.449

[24] Murphy, J. and Nonlan, T. (1982) Temperature Effects on Seed Imbibition and Leakage Mediated by Viscosity and Membranes. Plant Physiology, 69, 428-431.

[25] Parrush, D.J. and Leopold, A.C. (1977) Transient Changes during Soybean Imbibition. Plant Physiology, 59, 1111-1115.
https://doi.org/10.1104/pp.59.6.1111

[26] Modarresi, R., Van Damme, P. and Reheul, D. (2001) Seed Vigour in Iranian Wheat Seeds Exposed to Cold Condition. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, 66, 23-30.

[27] 杨亚萍. 水稻种子劣变的生理生化机制及其相关蛋白质研究[D]: [硕士学位论文]. 长沙: 湖南师范大学, 2008.

[28] Andras, S.C., Hartman, T.P., Alexander, J., et al. (2000) Combined PI-DAPI Staining (CPD) Reveals NOR Asymmetry and Facilitates Karyotyping of Plant Chromosomes. Chromosome Research, 8, 387-391.
https://doi.org/10.1023/A:1009258719052

分享
Top