﻿ 基于小波分析的高原山地区径流变异性分析

基于小波分析的高原山地区径流变异性分析Analysis of the Radial Rheological Characteristics of Plateau Mountain Area Based on Wavelet Analysis

Abstract: Hydrological cycle forecast is an important part of water resources management. For the characteristics of runoff variation in the mountainous area of the southwest plateau, this paper takes the sprinkler river basin in the Yunnan-Guizhou Plateau as an example. According to the runoff data on the four sites in 1954~2013, this paper studies the characteristics of runoff variation. The results show that: the regional runoff first cycle shows consistency (the first main period of the four sites is 18 a), indicating that the atmospheric circulation is an important factor affecting the main cycle variation of the regional runoff; the second period of change of regional runoff has obvious differences (the period of Xinjie station and Zujiabazha station is 28 a; that of Yudong station and Heishiluo station is 11 a), showing the important effect of plateau mountain on runoff fluctuation. Therefore, the method combining the first main cycle and the second main cycle is used, which has a good effect and significance for hydrological cycle forecast of the plateau runoff.

1. 引言

2. 研究区概况

3. 研究方法

${W}_{f}\left(a,b\right)={|a|}^{-1/2}{\int }_{R}f\left(t\right)\stackrel{¯}{\psi }\left(\frac{t-b}{a}\right)\text{d}t$ (1)

$Var\left(a\right)={{\int }_{-\infty }^{\infty }|{W}_{f}\left(a,b\right)|}^{2}\text{d}b$ (2)

Morlet小波是一种最常用的复数小波，其尺度函数不存在，且不具有正交性，但其时、频两域具有很好的局域性，可以把径流演变规律很好的表现出来。本文基于上述Morlet小波分析高原山地立体气候下径流周期性变化规律。

4. 结果与分析

4.1. 洒渔河渔洞水库年际径流变化趋势

Figure 1. Water charts and sites

4.2. 小波分析

(a) 渔洞站(Yudong) (b) 新街(Xinjie)(c) 祖家坝闸(Zujiabazha) (d) 黑石罗(Heishiluo)

Figure 2. The annual runoff time series and the trend of change

(a) 渔洞站(Yudong) (b) 新街(Xinjie) (c) 祖家坝闸(Zujiabazha) (d) 黑石罗(Heishiluo)

Figure 3. Runoff wavelet coefficient real part contour map

4.3. 小波检验

(a) 渔洞站(Yudong) (b) 新街(Xinji e)(c) 祖家坝闸(Zujiabazha) (d) 黑石罗(Heishiluo)

Figure 4. Annual runoff wavelet variance

4.4. 径流变化特征分析

Figure 5. Wavelet coefficient (real part) process line

5. 结论

1) 洒渔河径流1954~2013年多年平均径流深呈现减少趋势，流域径流存在明显的多时间尺度周期变化特征，其中渔洞和黑石罗依次为18 a、11 a、4 a，新街和祖家坝闸依次为18 a、28 a、11 a、6 a。

2) 洒渔河年径流周期变化总体上具有同步性，由于高山峡谷相间存在一定差异性，其表现在：从小波分析可以得出，洒渔河年径流具有18 a主周期变化规律，而在第二主周期上存在着差异。在18 a尺度主周期下，预计在2018~2024年以后洒渔河流域将处于枯水期。

3) 研究表明，西南高原山地特征的区域在小波变换分析中叠加第一主周期和第二主周期综合分析，既能体现大气环流主导影响，也能反映高原山地地形的波动影响，有助于提高径流水文周期的预报精度，同时对西南地区水资源水文周期管理具有重要意义。

[1] 赵丽娜, 宋松柏, 郝博, 等. 年径流序列趋势识别研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(3): 194-198. ZHAO Lina, SONG Songbai, HAO Bo, et al. Study on trend identification of annual runoff sequences. Journal of Northwest A&F University (Natural Science Edition), 2010, 38(3): 194-198. (in Chinese)

[2] 王文圣, 丁晶, 李跃清. 水文小波分析[M]. 北京: 化学工业出版社, 2005. WANG Wensheng, DING Jing and LI Yueqing. Hydrological wavelet analysis. Beijing: Chemical Industry Press, 2005. (in Chinese)

[3] 王秀杰, 封桂敏, 耿庆柱. 小波分析组合模型在日径流预测中的应用研究[J]. 自然资源学报, 2014, 29(5): 885-892. WANG Xiujie, FENG Guimin and GENG Qingzhu. Application of combined model in daily runoff prediction wavelet analysis. Journal of Natural Resources, 2014, 29(5): 885-892. (in Chinese)

[4] 周玉都, 史华峰, 张文军. 廊坊市近50年气温的时空变化特征[J]. 防灾科技学院学报, 2016, 18(3): 81-88. ZHOU Yudu, SHI Huafeng and ZHANG Wenjun. Temporal and spatial variation characteristics of temperature in Langfang in recent 50 years. Journal of Institute of Disaster-Prevention Science and Technology, 2016, 18(3): 81-88. (in Chinese)

[5] 万星, 丁晶, 张晓丽. 小波神经网络在径流预测中的研究[J]. 人民黄河, 2005, 27(10): 33-36. WAN Xing, DING Jing and ZHANG Xiaoli. Study on runoff prediction in the wavelet neural network. Yellow River, 2005, 27(10): 33-36. (in Chinese)

[6] 邱海军, 曹明明, 胡胜, 王彦民, 郝俊卿, 刘闻. 近60 a来中国洪涝灾情变化趋势持续性和周期性研究[J]. 地球与环境, 2014, 42(1): 17-24. QIU Haijun, CAO Mingming, HU Sheng, WANG Yanming, HAO Junqing and LIU Wen. A study on the persistence and periodic study of the trend of flood disaster in China in recent 60 years. Earth and Environment, 2014, 42(1): 17-24. (in Chinese)

[7] 刘晓琼, 刘彦随, 李同昇, 等. 基于小波多尺度变换的渭河水沙演变规律研究[J]. 地理科学, 2015, 35(2): 211-217. LIU Xiaoqiong, LIU Yansui, LI Tongsheng, et al. Evolution law of the runoff and sediment discharge of the Weihe River based on wavelet multi-scale transform. Scientia Geographica Sinica, 2015, 35(2): 211-217. (in Chinese)

[8] 张代青, 高军省. 基于小波分析的黄河上游径流变化周期研究[J]. 灌溉排水学报, 2007, 26(3): 75-78. ZHANG Daiqing, GAO Junsheng. Research on period of runoff time series in the upper reach of the yellow river based on wavelet analysis. Journal of Irrigation and Drainage, 2007, 26(3): 75-78. (in Chinese)

[9] 李彦彬, 尤凤, 徐建新, 黄强. 黄河径流变化规律的小波分析[J]. 水利水电技术, 2012, 43(1): 17-20, 26. LI Yanbin, YOU Feng, XU Jianxin and HUANG Qiang. Wavelet analysis of runoff variation in the Yellow River. Water Resources and Hydropower Engineering, 2012, 43(1): 17-20. (in Chinese)

[10] 夏库热•塔依尔, 海米提•依米提, 麦麦提吐尔逊•艾则孜, 米热古丽•艾尼瓦尔, 李建涛. 基于小波分析的开都河径流变化周期研究[J]. 水土保持研究, 2014, 21(1): 142-151. Shakure•Tahir, Hamid•Yimitz, Mamattursun•Eziz, Mihrigul•Anwar and LI Jiantao. Research on period of annual runoff in Kaidu River based on wavelet analysis. Research of Soil and Water Conservation, 2014, 21(1): 142-151. (in Chinese)

[11] 穆兴民, 宋小燕, 高鹏, 王飞, 王双银. 哈尔滨站径流、输沙的多时间尺度特征[J]. 自然资源学报, 2011, 26(1): 135-144. MU Xingmin, SONG Xiaoyan, GAO Peng, WANG Fei and WANG Shuangyin. The multi-time scale features of runoff and sediment discharge in Harbin. Journal of Natural Resources, 2011, 26(1): 135-144. (in Chinese)

[12] 冯夏清. 基于小波分析的浑河流域径流量周期分析[J]. 吉林水利, 2015(3): 39-41. FENG Xiaqing. Periodic analysis of runoff in the Hun River Basin based on wavelet analysis. Jilin Water Resources, 2015(3): 39-41. (in Chinese)

[13] 贺晋云, 张明军, 王鹏, 王圣杰, 王兴梅. 近50年西南地区极端干旱气候变化特征[J]. 地理学报, 2011, 66(9): 1179-1190. HE Jinyun, ZHANG Mingjun, WANG Peng, WANG Shengjie and WANG Xingmei. Climate characteristics of the extreme drought events in southwest China during recent 50 years. Acta Geographica Sinica, 2011, 66(9): 1179-1190. (in Chinese)

Top