基于电-热-力耦合模型功率器件焊料层失效下的热力特性分析
Research about Thermal Fatigue Characteristic of IGBT Module in Considering of Electro-Thermal-Mechanism Coupling and Crack

作者: 陈翔宇 , 李青昱 :国网辽宁省电力有限公司盘锦供电公司,辽宁 盘锦; 李文震 :国网内蒙古东部电力有限公司,内蒙古 呼和浩特; 杨帆 , 贺婷婷 :重庆大学电气工程学院,输配电装备及系统安全与新技术国家重点实验室,重庆;

关键词: IGBT模块电-热-力耦合焊料层缺陷热力特性IGBT Module Electro-Thermal-Mechanical Coupling Solder Defect Thermal Characteristics

摘要:
焊料层缺陷是引起功率器件失效的主要诱因之一,分析不同焊料层缺陷作用下功率器件的热力特性是提高功率器件可靠性的有效手段。本文首先建立了IGBT模块热-力特性分析的电-热-力多物理场全尺寸模型,该模型基于测量参数考虑了材料温度依赖性和力学特性;其次,分析了焊料层空洞和焊料层脱落分层在功率循环以及小载荷下对模块热力特性的影响规律。结果表明所建立的电-热-力多物理场模型能够较好表征焊料层空洞和焊料层脱落时功率器件热力特性的影响规律。当焊料层中出现空洞后,芯片表面温度分布发生了明显改变,高温主要集中在空洞边缘区域;当焊料层疲劳累积到一定程度后将进入非线性扩展阶段,模块热阻和结温呈指数函数增大,直至失效。

Abstract: Solder defect is one of the main causes of failure in power module, and the thermal stress analysis is an effective way to improve its reliability. In the paper, an electro-thermal-mechanical coupling model is built, which considers the temperature dependent of material and mechanical characte-ristic based on measurement parameters, and the built model is verified by experimental results. In addition, the influence of solder crack on the damage accumulation, as well as the fatigue damage under power cycling and small thermal loading cases is investigated. Finally, the condition as-sessment model is proposed in considering of the effect of crack damage. Results show that the built model can well characterize the influence of the solder layer void and the solder layer shedding on the thermal characteristics of the device. When the voids in the solder appear, the temperature distribution of the chip changes obviously, and the high temperature is mainly concentrated in the hollow edge region. When the fatigue layer of the solder accumulates to a certain extent, it will enter the nonlinear expansion stage. The module thermal resistance and junction temperature exponentially increase until failure.

文章引用: 陈翔宇 , 李青昱 , 李文震 , 杨帆 , 贺婷婷 (2017) 基于电-热-力耦合模型功率器件焊料层失效下的热力特性分析。 智能电网, 7, 443-451. doi: 10.12677/SG.2017.76049

参考文献

[1] 唐勇, 汪波, 陈明, 等. 高温下的IGBT可靠性与在线评估[J]. 电工技术学报, 2014, 29(6): 17-23.

[2] Ji, B., et al. (2015) In Situ Diagnostics and Prognostics of Solder Fatigue in IGBT Modules for Electric Vehicle Drives. IEEE Transactions on Power Electronics, 30, 1535-1543.
https://doi.org/10.1109/TPEL.2014.2318991

[3] 魏克新, 杜明星. 基于集总参数法的IGBT模块温度预测模型[J]. 电工技术学报, 2011(12): 79-84.

[4] Košel, V., de Filippis, S., Chen, L., et al. (2013) FEM Simulation Approach to Investigate Electro-Thermal Behavior of Power Transistors in 3-D. Microelectronics Reliability, 53, 356-362.
https://doi.org/10.1016/j.microrel.2012.09.002

[5] 郑利兵, 韩立, 刘钧, 等. 基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J]. 电工技术学报, 2011(7): 242-246.

[6] Lhommeau, T., Perpiñà, X., Martin, C., et al. (2007) Thermal Fatigue Effects on the Temperature Distribution inside IGBT Modules for Zone Engine Aeronautical Applications. Microelectronics Reliability, 47, 1779-1783.

[7] Sauveplane, J.B., Tounsi, P., Scheid, E., et al. (2008) 3D Electro-Thermal Investigations for Reliability of Ultra Low on State Resistance Power MOSFET. Microelectronics Reliability, 48, 1464-1467.

[8] SEMIKRON IGBT Module Datasheet, SKM50GB12T4.
http://www.semikron.com

[9] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.

[10] 汪泉弟, 张淮清. 电磁场[M]. 北京: 科学出版社.

[11] Pecht, M.G. and Govind, A. (1997) In Situ Measurements of Surface Mount IC Package Deformations during Reflow Soldering. IEEE Transac-tions on Components, Packaging, and Manufacturing Technology, Part C, 20, 207-212.
https://doi.org/10.1109/3476.649442

[12] Hoad, R., Carter, N.J., Herke, D. and Watkins, S.P. (2004) Trends in EM Susceptibility of IT Equipment. IEEE Transactions on Electromagnetic Compatibility, 46, 390-395.
https://doi.org/10.1109/TEMC.2004.831815

[13] Otiaba, K.C., Okereke, M.I. and Bhatti, R.S. (2014) Numerical Assessment of the Effect of Void Morphology on Thermo-Mechanical Performance of Solder Thermal Interface Material. Applied Thermal Engineering, 64, 51-63.

[14] Lai, W., Chen, M., Ran, L., et al. (2015) Low ΔTj Stress Cycle Effects in IGBT Power Module Die-Attach Lifetime Modelling. IEEE Transactions on Power Electronics, 39, 6575-6585.

分享
Top