无人机环绕目标飞行控制技术研究
Research on Surround Flight Control of Unmanned Aerial Vehicle

作者: 屈利伟 , 莫宏伟 :哈尔滨工程大学,黑龙江 哈尔滨;

关键词: 桥梁检测激光雷达环绕飞行Bridge Inspection Lidar Circling Flight

摘要:
论述了利用激光雷达测量信息解算无人机机头方向与环绕目标中心方向角度差即转差角和无人机与环绕目标间距离的方法。通过EKF融合陀螺仪、加速度计和磁力计数据用于无人机的姿态解算,采用具有角速率内环和角度外环的双环PD控制器进行无人机的姿态控制。将由激光雷达信息解算出的转差角反馈到转向控制PID控制器,控制器的输出量接入偏航角控制器用于机头锁定目标。将目标距离反馈到定距控制PID控制器,控制器的输出量接入俯仰角控制器用于维持无人机与环绕目标间的距离。两控制器相结合控制无人机环绕目标飞行。搭建了四旋翼无人机实验平台,通过柱状物体环绕实验验证了利用激光雷达解算数据控制四旋翼环绕目标飞行的可行性。

Abstract: In this paper, we discussed the method of using laser intensity direction and ranging (LIDAR) to solve the difference between the direction of the head of the unmanned aerial vehicle (UAV) and the direction of the target center, and the distance between the UAV and the target. The EKF fusion gyroscope, accelerometer and magnetometer data are used to analyze the attitude of the UAV. The attitude control of the UAV is carried out using a bicyclic PD controller with angular rate inner ring and angular outer ring. The feedback angle calculated by the lidar information is fed back to the steering control PID controller, and the output of the controller is connected to the yaw angle controller for the head locking target. The target distance is fed back to the pitch control PID controller, and the output of the controller is connected to the pitch angle controller to maintain the distance between the UAV and the surround target. The combination of two controllers controls the UAV to fly around the target. The experiment platform of quad-rotor is designed. The feasibility of using the lidar around the target flight is verified by the lidar object experiment.

文章引用: 屈利伟 , 莫宏伟 (2017) 无人机环绕目标飞行控制技术研究。 人工智能与机器人研究, 6, 125-134. doi: 10.12677/airr.2017.64014

参考文献

[1] 黄海峰. 多轴飞行器在公路桥梁检测中应用展望[C]//中国公路学会养护与管理分会. 2013年全国公路养护技术学术年会论文集桥隧卷. 徐州: 中国公路学会养护与管理分会, 2013: 46-48.

[2] 彭玲丽, 黄少旭, 张申, 等. 浅谈无人机在桥梁检测中的应用与发展[J]. 交通科技, 2015, 6(13): 42-44.

[3] Minaeian, S. and Son, Y.-J. (2016) Vision-Based Target Detection and Localiza-tion via a Team of Cooperative UAV and UGVs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 1005-1016.
https://doi.org/10.1109/TSMC.2015.2491878

[4] Özbay, M. and Şahingil, M.C. (2017) A Fast and Robust Automatic Object Detection Algorithm to Detect Small Objects in Infrared Images. Signal Processing and Communications Applications Conference (SIU), IEEE, Ankara, 1-4.

[5] Uke, N.J. and Futane, P.R. (2016) Efficient Method for Detecting and Tracking Moving Objects in Video. Advances in Electronics, Communication and Computer Technology (ICAECCT), IEEE, Pune, 343-348.

[6] 田小超, 李忠科. 双平面法标定的双目视觉三维测量系统[J]. 电光与控制, 2015, 22(3): 54-57.

[7] Abdallah, S.M., Asmar, D.C. and Zelek, J.S. (2007) A Benchmark for Outdoor Vision SLAM Systems. Journal of Field Robotics, 24, 146-165.

[8] 张欣, 续志军, 白越. 多旋翼无人机的姿态与导航信息融合算法研究[D]: [博士学位论文]. 长春: 中国科学院长春光学精密机械与物理研究所, 2013.

[9] Hong, L., Li, M.J. and Han, N. (2014) MEMS/GPS Integrated Navigation System Based on EKF. Applied Mechanics and Materials, 2933, 367-374.

[10] Hu, Z.X. and Gallacher, B. (2016) Extended Kalman Filtering Based Parameter Estimation and Drift Compensation for a MEMS Rate Integrating Gyroscope. Sensors and Actuators, 250, 96-105.

[11] 杨景阳, 李荣冰. 微惯性辅助的激光雷达室内同步建图与定位技术研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2014.

分享
Top