基于光滑模型约束的同震滑动分布正则化反演
Regularized Inversion of Coseismic Slip Distribution Based on Smoothness-Constrained Model

作者: 童孝忠 :中南大学地球科学与信息物理学院,湖南 长沙;维多利亚大学,地球与海洋科学学院,加拿大 维多利亚; 程东俊 , 吴思洋 , 董洁 , 郭瑜君 :中南大学地球科学与信息物理学院,湖南 长沙;

关键词: 同震滑动分布正则化反演光滑约束模型非负最小二乘2005年Nias地震Coseismic Slip Distribution Regularized Inversion Smoothness-Constrained Model Non-Negative Least Squares The 2005 Nias Earthquake

摘要: 同震滑动的空间分布估计问题是不适定的,其反演结果存在非唯一性。为了获取稳定的同震滑动分布,本文采用了光滑模型约束的正则化反演方法。算法实施过程中,构建了断层面非均匀离散的滑动量分布光滑约束模型,并设计一种快速稳定的正则化因子求取方法;为了获得合理的滑动分布,采用了非负最小二乘求解方法。理论均匀滑动分布模型的反演试算,验证了反演算法的有效性和稳定性,且非负最小二乘方法能规避不合理的滑动分布。利用光滑约束反演方法反演了2005年Nias地震的同震滑动分布,并与前人的研究结果进行了对比分析。2005年Nias地震反演结果显示:断层面最大滑动量为12.8 m,这与Konca等反演得到的结果一致,且滑动分布所释放的地震矩为9.91 × 1012 Nm,其地震震级为Mw = 8.6,与USGS公布的结果一致。通过理论滑动分布模型和实际震例的反演结果表明,光滑约束正则化反演方法是可行的,并能合理地重建断层面的同震滑动分布。

Abstract: Estimating the spatial distribution of coseismic slip is an ill-posed inverse problem, and the solution is non-unique. In order to obtain stable solution for coseismic slip inversion, regularization method with smoothness-constrained was imposed. For the implementation of inverse algorithm, we construct a smoothness-constraint model with non-uniform slip on the fault plane, and propose a fast and stable method for choosing regularization parameter. In order to get reasonable coseismic slip distribution, non-negative least squares method is adopted. Inversion for a synthetic model with uniform coseismic slip distribution shows that the inverse algorithm is effective and stable, and non-negative least squares method can reconstruct reasonable results. We conduct inversions on the 2005 Nias earthquake with smoothness-constraint regularized method, and make a comparison of other results. The results for the 2005 Nias earthquake indicate the maximum slip is about 12.8 m, which agrees well spatially with the coseismic slip distribution of Konca. The released moment based on the estimated coseismic slip distribution is 9.91 × 1012 Nm, which is equivalent to a moment magnitude (Mw) of 8.6 and almost identical to the value determined by USGS. The inversion results for synthetic coseismic slip distribution model and real earthquakes show that the smoothness-constrained regularized inversion method is effective, and can be reasonable to reconstruct coseismic slip distribution on the fault plane.

文章引用: 童孝忠 , 程东俊 , 吴思洋 , 董洁 , 郭瑜君 (2017) 基于光滑模型约束的同震滑动分布正则化反演。 地球科学前沿, 7, 653-662. doi: 10.12677/AG.2017.75066

参考文献

[1] Masterlark, T. (2003) Finite Element Model Predictions of Static Deformation from Dislocation Source in a Subduction Zone: Sensi-tivities to Homogeneous, Isotropic, Poisson-Solid, and Half-Space. Journal of Geophysical Research, 108, 2540.
https://doi.org/10.1029/2002JB002296

[2] Tong, X.P., Sandwell, D.T. and Fialko, Y. (2010) Coseismic Slip Model of the 2008 Wenchuan Earthquake Derived from Joint Inversion of Interferometric Synthetic Aperture Radar, GPS, and Field Data. Journal of Geophysical Research, 115, Article ID: B04314.
https://doi.org/10.1029/2009JB006625

[3] Maerten, F., Resor, P., Pollard, D., et al. (2005) Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations. Bulletin of the Seismological Society of America, 95, 1654-1665.
https://doi.org/10.1785/0120030181

[4] Barnhart, W.D. and Lohman, R.B. (2010) Automated Fault Model Discretization for Inversions for Coseismic Slip Distributions. Journal of Geophysical Research, 115, Article ID: B10419.
https://doi.org/10.1029/2010JB007545

[5] Pollitz, F.F., Burgmann, R. and Banerjee, P. (2011) Geodetic Slip Model of the 2011 M9.0 Tohoku Earthquake. Geophysical Research Letters, 38, Article ID: L00G08.
https://doi.org/10.1029/2011GL048632

[6] Fukuda, J. and Johnson, K.M. (2010) Mix Linear-Non-Linear Inversion of Crustal Deformation Data: Bayesian Inference of Model, Weighting and Regularization Parameters. Geophysical Journal International, 181, 1441-1458.

[7] Ziv, A., Doin, M.P. and Grandin, R. (2013) What Can Be Learned from Underdetermined Geodetic Slip Inversions: The Parkfield GPS Network Example. Geophysical Journal International, 194, 1900-1908.
https://doi.org/10.1093/gji/ggt207

[8] Yabuki, T. and Matsu’ura, M. (1992) Geodetic Data Inversion Using a Bayesian Infor-mation Criterion for Spatial Distribution of Fault Slip. Geophysical Journal International, 109, 363-375.
https://doi.org/10.1111/j.1365-246X.1992.tb00102.x

[9] Fukuda, J. and Johnson, K.M. (2008) A Fully Bayesian Inversion for Spatial Distribution of Fault Slip with Objective Smoothing. Bulletin of the Seismological Society of America, 98, 1128-1146.
https://doi.org/10.1785/0120070194

[10] Hreinsdóttir, S., Freymueller, J.T., Fletcher, H.J., et al. (2003) Coseismic Slip Distri-bution of the 2002 Mw7.9 Denali Fault Earthquake, Alaska, Determined from GPS Measurements. Geophysical Research Letters, 30, 1670.
https://doi.org/10.1029/2003GL017447

[11] Jiang, G.Y., Xu, C.J. and Wen, Y.M. (2013) Inversion for Coseismic Slip Distri-bution of the 2010 Mw6.9 Yushu Earthquake from InSAR Data using Angular Dislocations. Geophysical Journal International, 181, 1441-1458.

[12] 许才军, 邓长勇, 周力璇. 利用方差分量估计的地震同震滑动分布反演[J]. 武汉大学学报信息科学版, 2016, 41(1): 37-44.

[13] Okada, Y. (1985) Surface Deformation Due to Shear and Ensile Faults in a Half-Space. Bulletin of the Seismo-logical Society of America, 75, 1135-1154.

[14] Okada, Y. (1992) Internal Deformation Due to Shear and Ensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 82, 1018-1040.

[15] Tikhonov, A.N. and Arsenin, V.Y. (1997) Solution of Ill-Posed Problems. John Wiley, New York.

[16] Lawson, C.L. and Hanson, R.J. (1995) Solving Least Squares Problems. Society for Industrial and Applied Mathematics, Philadephia.

[17] Bro, R. and de Jong, S. (1997) A Fast Non-Negativity-Constrained Least Squares Algorithm. Journal of Chemometrics, 11, 393-401.
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L

[18] Symithe, S.J., Calais, E., Haase, J.S., et al. (2013) Coseismic Slip Distribution of the 2010 M7.0 Haiti Earthquake and Resulting Stress Changes on Regional Faults. Bulletin of the Seismological Society of America, 103, 2326-2343.
https://doi.org/10.1785/0120120306

[19] Farquharson, C.G. and Oldenburg, D.W. (2004) A Comparison of Automatic Tech-niques for Estimating the Regularization Parameter in Non-Linear Inverse Problems. Geophysical Journal International, 156, 411-425.
https://doi.org/10.1111/j.1365-246X.2004.02190.x

[20] 陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4): 937-946.

[21] 刘海飞, 阮百尧, 柳建新, 等. 混合范数下的最优化反演方法[J]. 地球物理学报, 2007, 50(6): 1877-1883.

[22] Kreemer, C., Blewitt, G. and Maerten, F. (2005) Co- and Postseismic Deformation of the 28 March 2005 Nias Mw8.7 Earthquake from Continuous GPS Data. Geophysical Research Letters, 33, L07307.

[23] Konca, A.O., Hiorleifsdottir, V., Song, T.A., et al. (2007) Rupture Kinematics of the 2005, Mw 8.6, Nias-Simeulue Earthquake from the Joint Inversion of Seismic and Geodetic Data. Bulletin of the Seismological Society of America, 97, 307-322.
https://doi.org/10.1785/0120050632

分享
Top