高坝坝基防渗帷幕结构优化研究
Study on Optimization of Anti-Seepage Curtain Structure for High Dam Foundation

作者: 张 悦 , 覃 源 , 何佳欢 :西安理工大学,西北旱区生态水利工程国家重点实验室,陕西 西安;

关键词: 防渗帷幕粒子群算法有限元模型优化研究Anti-Seepage Curtain Particle Swarm Algorithm Finite Element Model Optimization Study

摘要:
针对实际工程坝基防渗处理措施中灌浆帷幕的结构设计,既满足安全性又满足经济性问题,本文基于粒子群算法与有限元方法相结合计算满足约束条件下防渗帷幕的平均深度与等效厚度。以某高坝深厚覆盖层上的混凝土面板堆石坝为案例,首先分析二维模型中无防渗帷幕时坝基渗流场情况,得出无防渗帷幕时坝基透水率相对较高,容易产生渗透破环,因此必须在基岩中进行灌浆以降低坝基渗流量。研究发现:粒子群算法在帷幕结构优化中的可行性和适用性,得出随着迭代次数的增加,粒子不断向最优解靠近,目标函数(工程造价)随着迭代次数的增大逐渐减小并趋于平缓,该研究成果可用于对工程中帷幕灌浆的结构设计提供参考。

Abstract: The design of grouting curtain in seepage control measures of the dam foundation of the actual project not only meets the safety, but also meets the economic problems. In this paper, based on the combination of particle swarm optimization and finite element method, the average depth and equivalent thickness of impervious curtain under the constraint condition were calculated for concrete face rock fill dam on deep overburden. Firstly, the seepage field of the dam foundation in the 2D model was analyzed, and the permeability of the dam foundation is relatively high when it has no curtain, and it is easy to produce osmotic rupture. It is therefore necessary to perform grouting in the bedrock to reduce dam foundation seepage. The particle swarm optimization (PSO) is feasible and applicable in the optimization of curtain structures. It is concluded that as the number of iterations increases, the particles are close to the optimal solution, and the objective function (engineering cost) is gradually reduced and tends to be gentle as the number of iterations increases. The research results can be used to provide reference for the structural design of curtain grouting in engineering.

文章引用: 张 悦 , 覃 源 , 何佳欢 (2017) 高坝坝基防渗帷幕结构优化研究。 水资源研究, 6, 548-556. doi: 10.12677/JWRR.2017.66064

参考文献

[1] 崔文娟, 伍美华, 邓祥辉. 遗传算法和复合型法确定坝基帷幕灌浆优化方案[J]. 水电能源科学, 2006, 24(4): 60-63. CUN Wenjuan, WU Meihua and Deng Xianghui. Optimization of curtain grouting for dam foundation by genetic algorithm and compound method. Hydropower and Energy Science, 2006, 24(4): 60-63. (in Chinese)

[2] 党发宁, 田红梅, 王振华. 基于平衡防渗原理的土石坝防渗帷幕优化设计[J]. 水利水电科技进展, 2015, 35(4): 44-48. DANG Faning, TIAN Hongmei and WANG Zhenhua. Optimum design of anti-seepage curtain for earth-rock dam based on balanced anti-seepage principle. Advances in Science and Technology of Water Resources, 2015, 35(4): 44-48. (in Chi-nese)

[3] 郑伦鑫, 燕乔, 张胜利. 深厚砂砾石坝基防渗帷幕方案优化[J]. 三峡大学学报: 自然科学版, 2015, 37(3): 1-5. ZHEN Lunxin, YAN Qiao and ZHANG Shengli. Optimization of anti-seepage curtain scheme for deep sand and gravel dam foundation. Journal of the Three Gorges University: Natural Science Edition, 2015, 37(3): 1-5. (in Chinese)

[4] 何云霄, 赵冠. 混凝土坝坝基防渗帷幕深度对渗流量的影响[J]. 中国农村水利水电, 2013(9): 119-129. HE Yunxiao, ZHAO Guan. Influence of impervious curtain depth on seepage flow of concrete dam foundation. China Rural Water and Hydropower, 2013(9): 119-129. (in Chinese)

[5] RAVANDI, E. G., RAHMANNEJAD, R., KARIMI-NASAB, S. and SARRAF, A. Sensitivity analysis of effective parameters on water curtain performance for crude oil storage in Iranian URC using the 2K factorial design and numerical modeling. Tunnelling and Underground Space Technology, 2016(58): 247-256.
https://doi.org/10.1016/j.tust.2016.06.001

[6] LI, Z. F., GUO, D. M., WANG, Y. B. and ZHEN, Z. L. Technology research of large underwater ultra-deep curtain grouting in Zhongguan Iron Ore. Procedia Engineering, 2011(20): 713-737.

[7] WANG, G., MA, Z. Y. Hybrid particle swarm optimization for first-order reliability method. Computers and Geotechnics, 2017(81): 49-58.
https://doi.org/10.1016/j.compgeo.2016.07.013

[8] ZHANG, J. R., TANG, Q. H., CHEN, Y. L. and LIN, S. A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem. Energy, 2016(109): 765-780.
https://doi.org/10.1016/j.energy.2016.05.057

[9] ZHANG, Z. B., JIANG, Y. Z., ZHANG, S. H., GENG, S. M. and SANG, G. Q. An adaptive particle swarm optimization algorithm for reservoir operation optimization. Applied Soft Computing, 2014(18): 167-177.
https://doi.org/10.1016/j.asoc.2014.01.034

[10] BAI, T., KAN, Y. B., CHANG, J. X., HUANG, Q. and CHANG, F.-J. Fusing feasible search space into PSO for multi-objective cascade reservoir optimization. Applied Soft Computing, 2017(51): 328-340.
https://doi.org/10.1016/j.asoc.2016.12.005

[11] SHI, Y., EBERHART, R. Empirical study of partical swarm optimization. Proceeding of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1999: 1948-1950.

[12] 赵迪, 张宗亮, 陈建生. 粒子群算法和ADINA在土石坝参数反演中的联合应用[J]. 水利水电科技进展, 2012, 32(3): 43-47. ZHAO Liang, ZHANG Zongliang and CHEN Jiansheng. Application of particle swarm optimization and ADINA in parameter Inversion of earth-rock dam. Advances in Science and Technology of Water Resources, 2012, 32(3): 43-47. (in Chinese)

分享
Top